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a b s t r a c t

Beamforming based on microphone array is a method to identify sound sources. It can
visualize the sound field of the source plane and reveal interesting acoustic information.
Generalized inverse beamforming (GIB) is one important branch of beamforming tech-
niques due to its high identification accuracy and computational efficiency. However, in
real testing situation, errors caused by measurement noise and configuration problems
may seriously reduce the beamforming accuracy. As an inverse problem, the stability of
GIB can be improved with regularization methods. We proposed a new iterative reg-
ularization method for GIB by iteratively redefining the form of regularization matrix and
calculating the corresponding solution. Moreover, the newmethod is applied to functional
beamforming and double-layer antenna beamforming respectively. Numerical simulations
and experiments are implemented. The results show that the proposed regularization
method leads to more robust beamforming output and higher accuracy in both the two
applications.

& 2017 Elsevier Ltd All rights reserved.

1. Introduction

Beamforming is a technique used to process microphone array data in order to find the direction of incident acoustic
waves and estimate the power of sound source at medium or high frequency [1]. The most common form of beamforming is
the delay-and-sum beamforming (DAS) which compensates the time-delay between the signals received by the micro-
phones in order to localize the source by constructive interference [2]. For enhancing the adaptability of beamforming
method under different test conditions such as frequency, distance and array geometry, quantities of new methods have
been proposed over the last two decades.

One of the most important branches is generalized inverse beamforming whose basic idea is to build an inverse problem
model which represents the solution procedure of the beamforming output. The deconvolution method is proposed by
Brooks [3]. It aims at identifying Point Spread Functions (PSF's) in source maps. The PSF's are theoretical beam patterns
obtained by applying conventional beamforming using synthetical microphone data of monopole point sources. The ob-
jective of deconvolution methods is to replace these PSF's by single points, or beams with narrow widths. Among all kinds of
deconvolution methods, DAMAS [3] and CLEAN [4] are the most widespread.

The generalized inverse beamforming (GIB) is another representative algorithm presented by Takao Suzuki. After
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decomposing the microphones Cross Spectral Matrix (CSM) into eigenmodes, an inverse problem is defined and solved
iteratively [5]. Compared with conventional deconvolution approaches, the GIB has higher computational efficiency and
similar identification accuracy.

However, when it comes to low SNR (Signal to Noise Ratio) situation, the accuracy and stability are not satisfying, which
somehow limits the interpretation and relevance of beamforming maps [6]. In this paper, the accuracy is defined as the
main lobe width of the source map. The stability indicates the inverse solution's sensitivity to the measurement noise and
model uncertainties. It can be judged by discrete Picard condition [7], condition number [8] and so on [9]. This problem
tends to be more obvious and significant in real test situations. The main reason for the problem is that the inverse solution
without regularization is ill-conditioned [8], indicating that the solution can be very sensitive to measurement noise or
model uncertainties. This is characteristic of inverse acoustical problems. The errors caused by test configuration and noise
in measurement data may lead to large perturbation in output data [8].

To solve the ill-conditioned inverse problem, appropriate regularization method [10–12] should be applied. The most
classic regularization method is Tikhonov regularization [13] and it is also suitable for the inverse problem in acoustic source
localization with microphone array [14]. The regularization matrix and parameter are the key factors of the general Ti-
khonov solution of inverse problem. In contrast with regularization parameter, the regularization matrix also has significant
effect on the accuracy and stability of beamforming output. That can be found through the general Tikhonov solution
equation [9,15]. In conventional GIB, regularization parameter is selected by an empirical formula while the regularization
matrix is simplified to an identity matrix. That is not enough for more accurate identification when the source frequency is
not so high and the SNR is rather low (less than 15 dB).

Therefore, to obtain more accurate inverse beamforming output at low SNR, a new method combining generalized
inverse beamforming with functional beamforming is proposed by Shu Li [16,17]. In his core algorithm, the regularization
matrix is defined iteratively.

We have made further researches on Shu Li's iteration method. We found that the acoustical map of Shu's method is not
accurate enough when increasing the dynamic range, especially when SNR is low. This may be related to the algorithm
stability. To enhance the regularization strength and accurately detect the sound source, we propose a double iterative
regularization method in this paper. This modified algorithm is also combined with two other beamforming methods,
functional beamforming [18,19] proposed by Dougherty and double layer antenna beamforming [20,21] proposed by Pascal,
respectively. Each application shows that this method can achieve great improvements in output accuracy and stability both
in simulated and experimental data.

The remainder of this paper develops as follows: Section 2 introduces basic theory of the inverse beamforming and its
regularization. Section 3 explains the modified beamforming method with regularization strategy. This is used in Section 4
for the improved high order matrix function based beamforming with simulated and experimental data. Section 5 illustrates
another application of the proposed beamforming algorithm, followed by simulated and experimental data. Final conclu-
sions are given in Section 6.

2. Inverse beamforming and its regularization

The direct source-receiver model is

= ( )p Gq 1

where ×pM 1 is the acoustic pressure measured by the microphones and the subscript M indicates the number of micro-
phones, ×GM L is the transfer matrix and the subscript L indicates the number of scan points, and qL�1 is the acoustic pressure
in the source scanning plane, expressed as a vector.

From Eq. (1) we can find that by calculating the inverse of Gwe can directly solve q in ideal situation. However, due to the
ill-conditioning of the problem, a small perturbation in measurement data or transfer matrix G may enormously reduce the
accuracy of beamforming output. Therefore, regularization is needed.

The most classic regularization method, Tikhonov regularization, introduces a penalty function which consists of reg-
ularization matrix L and regularization parameter λ to obtain a more accurate solution of inverse problem.

An optimal inverse solution for Eq. (1) is found by solving this least-mean-square problem:

{ }λ Ω= ‖ − ‖ + ( ) ( )λq p Gq qarg min 22
2 2 2

where ‖ ⋅ ‖2 is 2-norm, Ω( ) = ‖ ‖q Lq 2, which is a smoothing norm of q. L is the regularization matrix, it works with reg-
ularization parameter λ to reduce the illness of inverse problem [9].

As for regularization matrix L, when L¼I, Eq. (2) is rewritten as

{ }λ= ‖ − ‖ + ‖ ‖ ( )λq p Gq qarg min 32
2 2

2
2

By solving Eq. (3), one obtains the standard solution of inverse problem. For standard solution, the regularization matrix
is simplified to an identity matrix and has little accurate control on the regularization of inverse problem, since the
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