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the impulse dynamic subspace is determined and the sufficient decomposition of the

Keywords: corresponding FRF is carried out. With the presented dominant modal decomposition

FRF » (DMD) method, the mode shapes, the modal participation vectors and the modal scaling

&?g;?ggj‘l;;z factors are identified using the decomposed FRF's. Analytical example is presented along
with experimental case studies taken from machine tool industry.

Mode shape . .
Machine tools © 2016 Elsevier Ltd All rights reserved.

1. Introduction

The main goal of this work is to develop a modal identification technique in order to extract the dominant dynamic
behaviour of a machine tool structure automatically. The need for such an automatic modal identification is mentioned in
[1]. The identification technique should be suitable for performing error analysis and stability predictions of certain ma-
chining (e.g. milling) operations [2]. The mechanical structures of turning and milling machines are usually stiff (and
consequently slightly damped) to withstand continuous and interrupted forcing originated from the cutting processes.
Moreover, in case of large heavy-duty machines, the dynamic behaviour of these structures varies along the workspace
causing additional difficulties in modelling.

A challenging problem of dynamic characterization of machines is that it requires human interaction with expert
knowledge in dynamics, which is fairly expensive and not always available in industry. According to current expectations,
future machine tools are envisioned having applied cyber-physical system (CPS) capabilities [3] that give sufficient self-
sensing and self-acting functionalities based on preferably non-parametric based techniques.

In most cases, only the dominant vibration modes are needed to predict the stability and the quality of machining
processes. Consequently, accurate modelling is not an expectation here. Most of the commercial techniques are not fully
automatized; an expert is needed to select the relevant modes, the relevant bandwidth and the correct model-order, also to
exclude the malicious modes. Notice, that there already exist well-based methods that are capable of building an exact
model of the entire dynamics of a given structure [4-6], however, the aim of the present paper is restricted to the iden-
tification of the dominant dynamics, but in an automatic way.

In order to extract modal parameters, complex time domain and frequency domain methods were developed together
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with one-directional, single degree-of-freedom (DOF) mode-picking methods [7-9], frequency domain decomposition FDD
[10] and mode indication functions such as MvMIF and CMIF [11]. Of course, a general method is expected to provide
acceptable solution in multi-DOF (MDOF), multi-directional, and multi-input/multi-output (MIMO) cases, too. Theoretically,
the same information is available both in the time and in the frequency domains, however, time domain methods are
usually preferred for slightly damped systems (like machine tool structures), while frequency domain methods are con-
venient in case of large damping. In the absence of sufficient excitation, techniques related to operational modal analysis
should also be mentioned; these determine only the poles in case of large structures [12,13].

The goal of frequency domain methods is to fit directly the analytical expression of the frequency response function (FRF)
to the measurements. Consequently, the most straightforward method is to formulate a nonlinear least square (LS) problem
(LSFD [14]) that leads to a nonlinear algebraic system of equations, which determines the modal parameters. In order to
avoid iterative solution initiated optionally, linear formulation and/or approximation of the LS problem are applied. This can
be achieved, for example, by means of the total LS (TLS) method [15], the least-squares complex frequency-domain (LSCF)
method [16], or the rational fraction polynomial (RFP) method [17]. The introduction of orthogonal describing polynomials
(OP, [18-20]) makes the RFP method well conditioned. In the frequency domain, another solution is the polyreference
algorithm (PFD, [21,22]), which utilizes the relation between responses in time and frequency domains (PLSCF, [23-25]). The
so-called polyMAX algorithm can be considered as further evolution of the LSCF and the PLSCF methods [26]. Stable LS
algorithm is presented in [27], which is able to deal with MIMO systems with minimal user interaction. Automated
methodology for PLSCF (polyMAX) is presented in [28] where the authors summarize pole selection method for pole sta-
bility charts; case studies are shown in [29]. The statistical basis of the automated selection algorithm is presented in [30].

Time domain methods work with impulse response functions (IRF's) directly, like in case of the least squares complex
exponential (LSCE) method [31,32]. This method considers each value of the sampled IRF's as a linear combination of
previous values with unknown coefficients. The coefficients are determined by a LS algorithm, from which the poles and the
residues can be derived. The polyreference in time domain (PTD) [33,34] takes the analytical expression of the IRF's and
determines the poles and the modal participation matrices from a polynomial approximation of a map corresponding to the
characteristic equation. The residues are calculated in the second stage of the algorithm by using LS algorithm. In addition,
the NEXT approach should be mentioned as an alternative way to determine modal parameters for high modal damping [35]
based on the correlation functions of time responses. The stochastic subspace identification SSI techniques [36-38] use the
measured time evolution of output state vectors generated by white noise excitation.

Contrary to the previous methods, the Ibrahim time domain method (ITD, [39-41]) and eigenvalue realization algorithms
(ERA, [42-44]) calculate the modal parameters directly from the bi-sampled IRF's or FRF's. The method proposed in this
study is an extension in this direction with a rather different algorithm, developed specifically for the machine tool industry
to deal with weakly damped structures. This algorithm is also based on bi-sampled IRF's and provides the system matrix
directly in an alternative simple way by introducing the impulse dynamic subspace (IDS) of the corresponding mechanical
system. With the help of the eigenvectors of the system matrix, an appropriate decomposition of the dynamics is possible
where one mode is dominant. Afterwards, a convenient technique is introduced to determine modal scaling factors and
mode shapes leading to an efficient algorithm that is capable of selecting the dominant dynamics automatically.

In summary, the goal is to present an alternative automatized modal analysis technique as an extension of ERA [45] and
LSFD [46,28] techniques. The paper explains the concept of IDS in the continuous time domain, and it also derives the
practical sampled discrete case. As a consequence, the system matrix of the corresponding free vibratory system can be
derived in an efficient way. The automatic identification of the relevant poles and the exclusion of the malicious IDS' make it
possible to construct a dominant decomposition of the FRF's. Throughout the paper, we refer to the proposed technique as
dominant modal decomposition (DMD) method. The effectiveness of this algorithm is represented in a numerical case study
of a multi-DOF but one-dimensional task, where the accuracy can also be traced. Then, the DMD method is also tested in
real-world industrial, three directional cases where the experimental FRF's of machine tool structures are decomposed and
the modal parameters are extracted. Finally, the large-scale modal test of an industrial fan is evaluated by the proposed
method.

2. Introduction of impulse dynamic subspace

Henceforward, the experimental FRF's are collected in a matrix function H(w) by using general non-proportionally
damped consideration of the modes
Nm T A xarH
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where N, modes are considered by their poles 4; € €, modal scaling factors Q; € C, modal participation vectors w; € CP" and
their mode shapes v; € CB™. In practice, incomplete FRF is defined as H(w): R — CB™*P" where B and D are the number of
selected spatial dimensions related to m number of sensing points and n number of excitation points. Let us define the FRF
in the way that H;j(w) = [Hij;k1(@)], wherei=1,2,...,.m, j=1,2,..,nandk, le {x,y,z}.
For the sake of simplicity, we assume D=B and n < m, which is theoretically equivalent to its opposite case (m < n). Also, direct
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