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a b s t r a c t

Bifurcation theory and continuation methods are well-established tools for the analysis of
nonlinear mechanical systems subject to periodic forcing. We illustrate the added value
and the complementary information provided by singularity theory with one dis-
tinguished parameter. While tracking bifurcations reveals the qualitative changes in the
behaviour, tracking singularities reveals how structural changes are themselves organised
in parameter space. The complementarity of that information is demonstrated in the
analysis of detached resonance curves in a two-degree-of-freedom system.

& 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Nonlinear resonances are a matter of increasing concern in engineering structures, and bifurcation analysis is by now a
standard tool in the study of responses of systems subject to periodic forcing. While this type of approach has proven
effective, its main limitation lies in that the frequency response is not considered as a whole. Rather, bifurcations are studied
for fixed values of the forcing frequency. On the contrary, singularity theory with a distinguished parameter [1] (singularity
theory in the following), identifies changes in a one-parameter bifurcation diagram, for example in a frequency response.
This viewpoint provides a useful complement to the classical use of bifurcation analysis in engineering applications, while
employing the same numerical methods [2, Ch.7].

We adopt the framework developed in [3], probably the most successful attempt to use methods of singularity theory (in
the broader sense of [4]) in the context of bifurcation problems. The use of this theory is classical in the analysis of the
Duffing oscillator [5]. However, to the best of the authors' knowledge, the engineering literature has not pursued the use of
such methods in problems of forced oscillations. This is our motivation to highlight the role of singularity theory in en-
gineering applications concerned with forced oscillations.

A concrete application in this paper is the analysis of isolated branches of solutions in the response of a system. Detached
resonance curves have been observed for different systems subject to periodic forcing [6–9], as well as in other applications
involving nonlinearities [10,11]. Their analysis is not straightforward in the classical framework of bifurcation analysis. In
contrast, we argue that singularity theory provides a complete answer to the problem by revealing the organising role of a
particular singularity, the asymmetric cusp. We illustrate this result on a two-degree-of-freedom systemwith cubic springs.
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The paper starts with the study of a two-degree-of-freedom system in Section 2, which illustrates and motivates the
proposed analysis. Section 3 presents those results of singularity theory that have a direct impact on the analysis of non-
linear frequency responses. Section 4 introduces the role of the asymmetric cusp in organising DRCs in parameter space.
Section 5 builds on the previous analysis to investigate the inclusion of a fifth-order spring to avoid DRCs. Conclusions are
presented in Section 6 (Fig. 1)).

2. A motivating example

To motivate the developments proposed in this paper, a harmonically-forced two-degree-of-freedom system possessing
two cubic nonlinearities is considered herein:
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where the parameters are listed in Table 1. This system represents a nonlinear primary system to which a nonlinear ab-
sorber, termed the nonlinear tuned vibration absorber (NLTVA), is attached. Similarly to what is achieved with the classical
linear vibration absorber, the NLTVA can maintain two equal peaks in the frequency response of the primary system, and
this despite the frequency-amplitude dependence of nonlinear oscillations ([12], see also the insets in Fig. 2). However, one
important challenge is that nonlinear systems can exhibit complex and rich dynamics. For instance, Fig. 2d depicts a de-
tached resonance curve (DRC) that is clearly detrimental to the performance of the nonlinear device.

This adverse dynamics was thoroughly investigated using the numerical continuation of periodic solutions and their
bifurcations in [13]. Here we complement this analysis with the viewpoint of singularity theory. In the same spirit of what
was proposed in [14,15] for forced Hopf bifurcations, we apply singularity theory to a bifurcation diagram identified to the
frequency response of the system. The starting point is to reduce the frequency response of (1) to a scalar equation; to obtain
it we use the harmonic balance method retaining one harmonic. The results obtained with this approximation are then
verified through numerical computation of frequency responses using an algorithm similar to the one used in [16] for the
computation of nonlinear normal modes. Appendix A details the reduction of the harmonic balance equations to a scalar
equation

ω α( ) = ( )g x f k c, , , , , 0, 22 2 2

where = −x y y1 2 is the relative displacement, called the state variable in the terminology of [1]. The frequency ω is the
bifurcation (distinguished) parameter.

The outcome of applying singularity theory to (2) is summarised in Fig. 2. At low forcing amplitudes the response
resembles that of a linear system (Fig. 2a), but as f is increased parts of it become bistable (Fig. 2b and c, note that part of

Fig. 1. Nonlinear tuned vibration absorber attached to a primary system.

Table 1
Parameters primary system and absorber.

primary system absorber

mass =m 11 =m .052
linear stiffness =k 11 k2¼0.0454
linear damping c1¼0.002 c2¼0.0128
nonlinear stiffness α = 11 α = 0.00422

G.I. Cirillo et al. / Journal of Sound and Vibration 392 (2017) 295–306296



Download English Version:

https://daneshyari.com/en/article/4924376

Download Persian Version:

https://daneshyari.com/article/4924376

Daneshyari.com

https://daneshyari.com/en/article/4924376
https://daneshyari.com/article/4924376
https://daneshyari.com

