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a b s t r a c t

The present paper proposes a new strategy for selecting representative points in the
probability density evolution method (PDEM) to conduct stochastic seismic response
analysis of nonlinear structures with uncertain parameters. In PDEM, the strategy for
selecting representative points in random-variate space is of critical importance to the
efficiency and accuracy. The proposed strategy is established based on the marginal
fractional moments of input random variables, which can be evaluated both analytically
and numerically without difficulty before performing stochastic analysis. In this strategy,
an optimization problem is actually involved. First, the initial points are generated by a
low discrepancy sequence and the corresponding assigned probabilities can be computed
accordingly. Then, the initial points are rearranged to minimize the index, which is
adopted as the maximum relative error between the estimated marginal moments and
the exact ones. The rearranged points are accepted as the representative points in PDEM
when the index reaches the prescribed tolerance. Numerical example is investigated,
showing that the proposed strategy can achieve the good tradeoff of efficiency and ac-
curacy in PDEM for seismic response analysis of structures with uncertain parameters.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

For engineering structures, it is almost inevitable to encounter nonlinear behaviors when they are driven by seismic
ground motions [1]. On the other hand, randomness has long been observed and widely recognized in both seismic ground
motions and structural parameters. Thus, it is of paramount importance to take into account both the nonlinearity and the
involved uncertainties to assess the structural performance. In fact, this subject can be categorized as stochastic structural
analysis theory and random vibration theory. In the past three decades, extensive developments have been studied.
The representative contributions on stochastic structural analysis theory include random perturbation method [2]
and orthogonal polynomials expansion method [3–5], however, these methods may be not applicable to general nonlinear
structures [6]. In random vibration theory, many useful methods such as the method of moments [7–10], the Fokker-Planck-
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Kolmogorov (FPK) equation method [11], etc. are extensively investigated. Unfortunately, obtaining the probabilistic dy-
namic response of complex multiple-degree-of-freedom (MDOF) nonlinear structures is still a great challenge. Although
Monte Carlo simulation (MCS) [12] and its various improvements [13–15] are versatile regardless of the structure is linear or
nonlinear, the computational efforts may still be intractable especially for large-scale nonlinear structures. Thus, Monte
Carlo simulation is widely accepted as a checking method for verification of a newly developed method. To summarize, the
methods mentioned above may be not able to achieve the tradeoff of accuracy and efficiency in stochastic seismic response
analysis of nonlinear structures with uncertain parameters.

Alternatively, the probability density evolution method(PDEM) [6,16,17], which is capable of capturing the instantaneous
probability density function, provides a new perspective to tackle such a problem. In PDEM, a governing partial differential
equation called generalized density evolution equation (GDEE) is derived according to the principle of preservation of
probability [18]. Numerical algorithms for GDEE, especially the selection of representative points in random-variate space,
play an important role in keeping the balance between accuracy and efficiency in practical applications [1]. Several en-
deavors have been made for the selection of points in PDEM such as the dimension reduction method via mapping [19], the
tangent sphere method [20] and the number theoretical method [21]. However, when the dimension is large, the effi-
ciencies of these methods still need to be improved. In addition, the adaptability of cubature points as the representative
points in PDEM is discussed in details in Ref. [1], where a criterion is put forward to select the appropriate cubature points
and weights for PDEM. Recently, Chen and his co-authors propose a generalized-F (GF) discrepancy [22] and develop a GF
discrepancy based strategy for points selection [23] in PDEM. Nevertheless, the investigation of points selection in PDEM is
still of great significance, which is closely related to the accuracy and efficiency of stochastic seismic response analysis of
nonlinear structures.

In the present paper, a new marginal fractional moments based strategy for points selection in PDEM is proposed to carry
out seismic response analysis of nonlinear structures with random parameters. This paper is organized as follows. In Section
2, the fundamentals and the numerical algorithms of PDEM are introduced briefly. Then, the new strategy to select re-
presentative points in PDEM is put forward in Section 3, where the marginal fractional moments of input random variables
are adopted as the indices. In Section 4, a numerical example is studied to verify the efficacy of the proposed strategy in
PDEM. Concluding remarks are included in the final section.

2. Fundamentals of PDEM and its numerical algorithms

In this section, the fundamentals of PDEM and its numerical algorithms are firstly introduced.

2.1. Fundamentals of PDEM

Without loss of generality, consider the equation of motion of an MDOF structural system subjected to seismic excitation
as follows

Θ Θ Θ ΘΓ( ) ¨ + ( ) ̇ + ( ) = − ¨ ( ) ( )x tM Y C Y f Y M, , 1g

Where M and C are the ×n n mass and damping matrices, respectively, f is the ×n 1 linear/nonlinear restoring force vector,
Γis the ×n 1 loading influence matrix, ẍg denotes the seismic ground motion applied to the structure, Ÿ , Ẏ and Y denote the
acceleration, velocity and displacement vectors of the structure, respectively, ( )Θ Θ Θ Θ= , , ... , s1 2 represents s basic in-
dependent random variables involved in both structural parameters and external excitation with known probability density
function ( )θΘp .

Structural dynamic problem (1) is usually well-posed, which means the solution to Eq. (1) is existent, unique and de-
pendent on the parameter Θ. Generally, besides the displacement and velocity, some other physical quantities (e.g. the
stress, internal forces, etc.) denoted as ( ) ( )=t Z Z ZZ , , ... , m

T
1 2 are of practical interest. Thereby, it is convenient to suppose

that

Θ Θ( ) = ( ) ̇ ( ) = ( ) ( )t t t tZ H Z h, , , 2

where H and h are deterministic operators.
Because the randomness involved in the structural dynamic system is completely characterized by Θ, the augmented

system ( )( ) ΘtZ , is probability preserved, which leads to [6]

∫ ( )θ θ =
( )Ω Ω

Θ
× Θ

D
Dt

p t d dz z, , 0
3Z

t

where ( )θΘp tz, ,Z is the joint PDF of ( )( ) ΘtZ , , Ω ×t ΩΘ is the distribution domains of Z at the time instant t and Θ.
After a series of mathematical manipulations, one can obtain the generalized density evolution equation (GDEE) such

that [24,25]
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