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a b s t r a c t

Advances in sensor deployment and computational modeling have allowed significant
strides to be recently made in the field of Structural Health Monitoring (SHM). One widely
used SHM strategy is to perform a vibration analysis where a model of the structure's
pristine (undamaged) condition is compared with vibration response data collected from
the physical structure. Discrepancies between model predictions and monitoring data can
be interpreted as structural damage. Unfortunately, multiple sources of uncertainty must
also be considered in the analysis, including environmental variability, unknown model
functional forms, and unknown values of model parameters. Not accounting for these
sources of uncertainty can lead to false-positives or false-negatives in the structural
condition assessment. To manage the uncertainty, we propose a robust SHM methodology
that combines three technologies. A time series algorithm is trained using “baseline” data
to predict the vibration response, compare predictions to actual measurements collected
on a potentially damaged structure, and calculate a user-defined damage indicator. The
second technology handles the uncertainty present in the problem. An analysis of ro-
bustness is performed to propagate this uncertainty through the time series algorithm
and obtain the corresponding bounds of variation of the damage indicator. The un-
certainty description and robustness analysis are both inspired by the theory of info-gap
decision-making. Lastly, an appropriate “size” of the uncertainty space is determined
through physical experiments performed in laboratory conditions. Our hypothesis is that
examining how the uncertainty space changes throughout time might lead to superior
diagnostics of structural damage as compared to only monitoring the damage indicator.
This methodology is applied to a portal frame structure to assess if the strategy holds
promise for robust SHM. (Publication approved for unlimited, public release on October-28-
2015, LA-UR-15-28442, unclassified.)
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1. Introduction

In the discipline of Structural Health Monitoring (SHM), the condition of a structure is often assessed using a combi-
nation of physical measurements and predictions frommathematical or numerical models [1,2]. The paradigm is to infer the
structural condition from changes in the vibration response [3–6]. A structure inevitably degrades as it ages, through cycles
of thermal loading, structural loading, and other conditions that affect structural health. As a result of this structural de-
gradation, at some point, the structure may no longer be able to meet its performance requirements. This work contributes
to the vast body of literature that develops diagnostics to detect such changes before they become safety or mission critical
[7,8].

To detect the onset of changes that could adversely affect structural integrity, the state-of-the-practice is to attach
sensors to the structure and measure its vibration response from external excitation. Commonly, accelerometers and strain
gauges are used to measure the structure's response [9,10]. For in-service structures, ambient excitations such as cars on a
bridge, wind over a building, or ground vibrations are typically used to elicit the vibration response [11,12]. In contrast, it is
common to perform deliberate and controlled excitation such as a modal hammer impact strike or modal shaker for la-
boratory tests. Diagnostics of structural health can be sought by analyzing changes to the Frequency Response Function
(FRF) data, which is appropriate for dynamics that remain mostly linear and stationary [13,14]. Another approach is to train
a time series model on the pristine condition of the structure, and then use the model to predict the structure's response
and assess if its condition remains unchanged [15–17]. Shifts in natural frequencies observed from the FRF data, or de-
viations from predictions of time series models, could indicate structural damage [14,18]. It is emphasized that this process
is only effective if measurements of the structure in its current state can be compared to measurements obtained from the
pristine structure, which form a known “baseline.” In the absence of baseline test data, mathematical modeling can be
substituted to create theoretical “data” of the pristine state [19].

In this study, a time series model from the family of Auto Regressive (AR) representations [20] is used to analyze the
acceleration response data (measurements) from an aluminum frame structure tested in controlled laboratory settings. The
AR model is trained using multiple sets of vibration responses collected while the structure is in a “pristine,” or undamaged,
condition. The hypothesis is that the occurrence of damage manifests itself as a significant difference between what is
measured on the (now damaged) structure and what the trained AR model predicts. The difference in structural condition,
from undamaged to damaged, is diagnosed by large prediction residuals. A damage indicator is proposed that derives from
statistics of the prediction residuals.

While the aforementioned strategy is well accepted within the SHM community, one challenge, which remains for the
most part unresolved, is the quantification of uncertainty. A change in vibration signature does not necessarily indicate that
the structure is damaged. It might, instead, be due to environmental variability, such as a change in temperature or input
excitation [21]. To avoid the possibility of generating false-positives or false-negatives, it is highly desirable to “separate” the
effects of environmental variability from those of structural damage.

Another unavoidable source of uncertainty is lack-of-knowledge associated to the model used to predict the vibration
response. For example, when using the AR representation, the choice of model order has been shown to affect the as-
sessment of structural health [20]. Further, when training a model of arbitrary mathematical form, its parameters might be
non-unique whereby multiple sets of parameter values are able to replicate the training data with comparable fidelity. It is
highly desirable to “separate” the effects of model-form uncertainty from those of structural damage. In this work, the
effects of environmental uncertainty are quantified by replicating the vibration tests when the input excitation signal is
varied within reasonable bounds. Likewise, the effects of modeling uncertainty are quantified by analyzing, not a single
best-fitted time series model, but a family of models that includes all representations that fit the measurements with a
similar level of accuracy. The effects of these two main sources of uncertainty (environmental variability and model-form
uncertainty) are quantified such that the structural damage detection can be rendered robust to their unavoidable occur-
rence [22].

The description of environmental variability and modeling lack-of-knowledge is inspired by the theory of information-
gap (or info-gap) for decision-making [23]. The magnitude, or “size,” of the uncertainty, which the decision (“is the structural
state pristine or damaged?”) must be robust to, is controlled by a horizon-of-uncertainty parameter denoted by α. A larger
value of α increases the uncertainty considered in the analysis and, therefore, allows for greater potential deviation between
reality and the numerical model used to predict the structural state. Refs. [24,,25] provide examples of defining the horizon-
of-uncertainty α, and performing an analysis of robustness, for applications to groundwater flow and transient dynamics,
respectively.

This research aims to assess structural conditions in a manner that is immune (robust) to uncertainty. To do so, two
concepts are combined. Firstly, the maximum horizon-of-uncertainty, α, required to capture the environmental variability
and modeling lack-of-knowledge for the pristine state is determined. This is a conventional analysis of robustness such as
proposed, for instance, in Refs. [22,23]. Secondly, damage is diagnosed by observing whether α increases, which would
indicate “growth” of the uncertainty space, as the (potentially damaged) structure progressively deviates from the pristine
state. The novelty is to assess how α changes over time, after having set a “baseline” that represents the environmental
variability. While embedding an info-gap model of uncertainty within damage detection has been previously achieved
(see, for example, an application to neural networks in Ref. [26]), monitoring the growth of the uncertainty space is an
aspect unique to this work. Another enhancement is the ability to account for the correlation structure of our uncertainty
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