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1. Introduction

Parametrically amplifying (adding parametric to direct excitation for boosting resonant oscillations) microelec-
tromechanical resonators, which in recent years have been used for filtering and sensoring [1,2], can be advantageous for
signal amplification [3], and appear promising for energy harvesting [4,5]. They can conveniently be modelled with an
appended cubic nonlinearity [6,7], reflecting the symmetric effects of nonlinear curvature or midplane stretching [8], with
the nonlinear effects being comparably stronger due to the small length scale [9]. The effects of pure cubic nonlinearity for a
parametric amplifier have been investigated in [10].

The effect of mixed quadratic and cubic nonlinearities is considered in the present work for two reasons. First, the quadratic
nonlinearity can conveniently be introduced alongside the cubic nonlinearity as a correction term of the mathematical model. In
this way it appears in the governing equation of motion as small compared to the cubic term. Secondly, the study of relatively
strong quadratic nonlinearity is also relevant because it can model an asymmetry in restoring forces of elastic structures [11,12],
e.g., due to buckling or initial curvature. The quadratic nonlinearity may even overcome the cubic nonlinearity, if the static
deflection is large, or when the beam is very slender [13]. Therefore this study is motivated by an interest in general effects on
parametric amplifiers, of both pure quadratic nonlinearity, and mixed quadratic and cubic nonlinearities.

Several works report on combined parametric and direct excitation including quadratic and cubic nonlinearities [14-16].
Commonly a perturbation method is applied, assuming damping, nonlinear, and excitation terms to be small, and that
subthreshold (response dominated by the direct excitation component) pumping (adding parametric excitation) is applied.
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In some cases it is also assumed that the quadratic nonlinearity is smaller than the cubic nonlinearity, e.g., [17]. The present
work considers both when the quadratic nonlinearity is smaller and larger than the cubic nonlinearity, and focuses on
superthreshold pumping (parametric instability threshold associated with an Arnold tongue). Superthreshold pumping is of
interest because of the potentially higher achievable gains [10], as compared to being operated below their linear instability
threshold, i.e. for subthreshold pumping.

The present study provides essential insights into the effects of mixed quadratic and cubic nonlinearities on parametric
amplifiers. For instance it reveals a change in the number of amplitude-frequency solutions due to nonlinear effects and
explains previously observed experimental jumps and bi-stability in the amplitude-phase characteristics [18].

In Section 2 a model system is proposed and the corresponding approximate analytical steady-state vibration amplitude
is solved for using the method of varying amplitudes (MVA), for the cases of pure as well as mixed cubic and quadratic
nonlinearities. In Section 3 these approximate analytical results are compared with results of direct numerical integration,
showing good agreement. In Section 4 main conclusions of the paper are outlined.

2. Steady-state response analysis

A forced Duffing-Mathieu equation with unit-normalized linear natural frequency and additional quadratic nonlinearity
is investigated:

X+Px+(1+p cos Q20X +kX* + k3 x> = d cos (Qt+ ), (1)

where (') denotes temporal derivatives, § = 2 where { is the damping ratio, k is a quadratic nonlinearity coefficient, ks is a cubic
nonlinearity coefficient, (...)x describes the linear elastic restoring force, p is a parametric excitation amplitude, d is a direct
excitation amplitude, t is the time, and ¢ is the phase between the external and parametric excitation. A similar system but
without quadratic nonlinearity has been investigated in [10]. It is the simplest one degree of freedom system which captures the
effects of linear damping, quadratic and cubic nonlinearities, and which has both direct and parametric excitation, which are
necessary for a parametric amplifier. Such a system is also physically easy to realize approximately [19-22].

To solve the steady-state oscillations x(t) of (1) approximately, the MVA is employed, as proposed in [23] (confer also, e.g.,
[24]), where one assumes a harmonic series solution form:

X(t)=> " Ami(t) oS (M) +Am(t) sin (ML), (2)
m=0

where the amplitudes A;;;; and A;,» are time-varying, and not required to vary slowly. This is contrary to the method of
harmonic balance, where the coefficients A;,; and A;;; would be constants and (2) an approximation. The allowed time
dependency of A;; and A;;;> means that (2) merely represents a shift of variables, by which the solution form (2) is exact for
any value of n. The transition from x to 2n+1 new variables, A;;; and A, (Agz = 0), implies that a total of 2n+1 equations
are needed. Inserting (2) into (1) and requiring the coefficients of the involved harmonic terms to vanish identically, we
introduce 2n additional equations; equation 2n+1 then includes the remaining harmonic terms, including those having
order higher than n. Considering n=2 and thus the first three harmonics in (2), yields:

X(t) =Ag1(t) +A11(t) cos (2t) +Aqx(t) sin (2t) + A1 (t) cos (282t) + Ay (t) sin (2€2¢), 3)
and one obtains the following five equations with five variables Ay, A2, A21, A2z, and Ag; to solve for:
. . . 1
A1 +PA1 +20A1; + fRA1; + A (1 - +§P+2k2A01 +3k3A51> +(3k3Ao1 +k2)(A11A21 +A12A22)
3 1/ 2 2 20\ _
+5 kaAu (5 (AT +AL) +A3, +43, ) =dcos (), (4)

.. . . 1
A1+ A1 —20A1, — A1 +Ar2 (1 - —jp+21<2A01 +3k3A51> +(3k3Ao1 +k2)(A11A22 — A12A21)
3 1 .
+5ksArz <§ (A%] +A$2) +A2, +A§2> = —dsin (¢), (5)

Ag1 +PAn +4QA% +Axy +pAg; +292(BAr, —2QAs1)

1 1 1 3
+5 ko (AT — A3 +4A01An ) +3ksfzs (Z (A3, +43,) +5 (AT +AL) +A§1) +5 kAot (A} AT ) =0, (6)

Axy+ Az —4QAs — 22751 +A11Ara(ky +3ksAor) +Az (1 -4 +2k2A01)

1 1
+3ksAs; (Z (A5 +43,) +5 (AT +AT,) +A§1) =0, (7)
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