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a b s t r a c t

The electromagnetically induced parametric vibration of the symmetrical three-phase
induction stator is examined. While it can be analyzed by an approximate analytical or
numerical method, more accurate and simple analytical method is desirable. This work
proposes a new method based on the field-synchronous coordinates. A mechanical-
electromagnetic coupling model is developed under this frame such that a time-invariant
governing equation with gyroscopic term can be developed. With the general vibration
theory, the eigenvalue is formulated; the transition curves between the stable and unstable
regions, and response are all determined as closed-form expressions of basic mechanical-
electromagnetic parameters. The dependence of these parameters on the instability beha-
viors is demonstrated. The results imply that the divergence and flutter instabilities can
occur even for symmetrical motors with balanced, constant amplitude and sinusoidal vol-
tage. To verify the analytical predictions, this work also builds up a time-variant model of
the same system under the conventional inertial frame. The Floquét theory is employed to
predict the parametric instability and the numerical integration is used to obtain the
parametric response. The parametric instability and response are both well compared
against those under the field-synchronous coordinates. The proposed field-synchronous
coordinates allows a quick estimation on the electromagnetically induced vibration. The
convenience offered by the body-fixed coordinates is discussed across various fields.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Periodically time-variant systems appear naturally in many branches of the engineering applications, such as the permanent
magnet motors, planetary gears and other structures subjected to traveling load. The rotating magnetic load in the three-phase
induction motor increases when the mechanical deflection increases, which in turn increases the magnetic load more, and thus a
mechanical-electromagnetic coupling is aroused. This coupling can lead to a governing equation of motion with periodically time-
variant coefficients, and thus create an unstable parametric vibration with an ever-increasing amplitude. As an important dynamic
behavior, the vibration instability becomes a basic concern in particular for those heavy-load applications. This instability affects the
performance or even leads to rotor-stator rubbing causing permanent damage, but it is complicated to analyze due to the multi-
field coupling effect. Because of the interdependence between the excitation and displacement, a difficulty in the analytical
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estimation on the instability behaviors may be encountered. This work deals with the accurate and quick analytical estimation of
the symmetrical three-phase induction motors with a balanced, constant amplitude and sinusoidal voltage.

Singh et al. [1] examined the parametric instability of a multi-phase induction motor without any mechanical or electric
error. They determined the stability through the placement of the eigenvalues. Most often, the unstable parametric vibration
is aroused by the manufacture and installation errors. This instability was captured based on the rigid-body assumption by
Belmans et al. [2], but the parametric source was omitted during analysis. Iwatsubo et al. [3] studied the parametric
vibration induced by the electromagnetic force. Yang et al. [4] derived an ordinary differential equation with periodically
time-variant coefficient of a large induction motor, and they investigated the instability and imbalanced response. Karlsson
et al. [5] dealt with the rotor dynamic behaviors of an eccentric hydropower generator. The above studies treat the motor as
rigid-body by removing the elasticity of the stator and rotor such that the parametric source results from the time-variant
air-gap length. For an ideally symmetrical motor when the force wavenumber is greater than the value of two, rigid-body
assumption makes the net electromagnetic force become zero because all forces in the radial and tangential directions are
naturally neutralized. Thus, this assumption can omit certain instabilities especially for those motors with thin components.

Apart from the rigid vibration caused by eccentricity, the elastic deflection of an ideally balanced motor can generate a time-
variant air-gap length such that the motor can experience an elastic instability, but no previous work can be found in this respect. In
fact, whatever the parametric sources and assumptions are, the unstable vibration can be induced if the load is related to the
displacement in a time-variant fashion. This leads to time-variant stiffness coefficient in the governing equation of motion. While
the research in this regard is scare, related studies can be found in other systems, such as the ring gear subjected to rotating mesh
stiffness [6,7], the stator subjected to rotating magnetic stiffness [8], general ring-shaped component subjected to rotating support
stiffness [6,9] and even cylindrical shell subjected to periodic axial load [10]. All these systems have time-variant stiffness coeffi-
cients. One can predict that this can exist in the induction motor because of the similarities in the structure and excitation, where
the excitation becomes the rotating magnetic stiffness. This vibration is independent of the rigid displacement, fabrication error,
and installation error, and it can be aroused even in ideally symmetrical motor.

As a primary difficulty, the analytical solution of the parametric system is normally difficult to achieve except for some special
class of periodic system. For the induction motor, the vibration instability can be analyzed in a preferred coordinates frame. The
most commonly used include the stationary [2,11], rotor [5,12], synchronous [1,13] and quasi-rotating [14] coordinates, where the
first is the conventional inertial frame, but the other three are the so-called “body-fixed” ones. Under the stationary frame, the

Nomenclature

t time
θ position angle in inertial coordinates
φ position angle in field-synchronous coordinates
uθ tangential displacements in inertial coordinates
vr radial displacement in inertial coordinates
uφ tangential displacement in field-synchronous

coordinates
vρ radial displacements in field-synchronous

coordinates
ku support stiffness in the tangential direction
kv support stiffness in the radial direction
ω angular frequency
Ω rotation speed of magnetic load
c axial height
h radial thickness
d density
E Young's modulus
R neutral circle radius
A cross-sectional area
T kinetic energy
U0 potential energy of the stator
I cross-sectional moment of inertia of the stator
Us potential energy of the support
PðφÞ electromagnetic force per unit area in field-

synchronous coordinates
Pðθ; tÞ electromagnetic force per unit area in inertial

coordinates
μ0 permeability of the free space

bðφÞ air-gap flux density in radial direction in field-
synchronous coordinates

Λ air-gap permeance
Fmmf magnetomotive force
Fmax maximum magnetomotive force
kN1 fundamental winding factor
N number of conductors per pole per phase
Im RMS (Root mean square) current
p number of pole pairs
kq1 fundamental distribution coefficient
ky1 fundamental pitch coefficient
q slots per pole per phase
α groove angle
m number of phases
z number of slots
y1 tooth pitch
τ polar distance
δ air-gap length
g average of the air-gap length
Uq potential energy induced by the

electromagnetic force
U total potential energy
s bending flexibility
ηφn the nth response in field-synchronous

coordinates
n wavenumber
β time phase
λ eigenvalue
ηθn the nth response in the inertial coordinates
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