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a b s t r a c t

In recent years, the boundary element method has become a widely used tool for calcu-
lating the mitigation effects of noise barriers. However, since for large structures calcu-
lations in 3D become very inefficient, most of the standard implementations are only in
2D. This means that the noise source is implicitly assumed to be given by a coherent line
source, which is not realistic in most cases. By using a Fourier transform with respect to a
spatial coordinate along the length of the structure it is possible to reduce the 3D problem
to several 2D problems with distinct wavenumbers which allows the simulation of more
realistic noise sources and which is typically referred to as 2.5D BEM. To that end, it is
necessary to numerically calculate a Fourier-like integral over all the 2D solutions. In this
work, an efficient way to calculate this integral is given building on existing approaches
using Clenshaw–Curtis–Filon quadrature and demodulation combined with an adaptive
order-selection scheme. As BEM calculations are costly, the main focus of the method
introduced lies on avoiding too many of these calculations. The efficiency of the method is
illustrated using two different examples: a reflecting cylinder and an L-shaped noise
barrier.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The boundary element method (BEM) is an attractive tool for modeling outdoor sound propagation because only the
surface of the scatterer needs to be discretized and (semi)infinite domains can be treated very efficiently. Especially for the
calculation of mitigation effects of noise barriers, the application of the BEM has received growing attention over the last
two decades (see e.g. [1–15]). The length of noise barriers can be anywhere between a few hundred meters to many
kilometers. Even though methods exist to considerably speed up the calculation for large BEM-problems such as the fast
multipole method or H-matrices (cf. [16,17]) a full simulation of such a large structure in 3D is not feasible, in particular at
high frequencies, as the number of BEM elements needed for accurate calculations scales quadratically with the frequency.
Simply using a shorter barrier segment to model the full barrier leads to a perturbation of the real solution by an unwanted
diffraction of the sound around the barrier ends. This effect becomes increasingly problematic when the receiver or the
source is placed far away from the barrier or in the vicinity of the end of the barrier which may happen, for instance, when
modeling oblique incidence.
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Although approaches exist to reduce the computational effort in 3D by harnessing certain symmetries in the structure
such as periodicity (see e.g. [14]), it is in most practical applications typically assumed that the noise barrier has a constant
cross-section and is straight along its length as well as infinitely long. Under these assumptions the full 3D calculations can
be reduced to 2D to enhance numerical efficiency (for details see e.g. [18]). In that case, however, it is also implicitly
assumed that the sound source itself is infinitely long and fully coherent along its length, i.e. the sound source is represented
by infinitely many point sources lying along a straight and infinitely long line that oscillate in phase. Besides being clearly
not realistic it has been shown that the source type can have a considerable effect on the insertion loss of a barrier [19] and
thus this simplification may lead to wrong results. To circumvent this problem, Duhamel [20] published a method for a 2.5D
calculation of the acoustic field for infinitely long objects of constant cross-section that allows using point sources (for
applications see e.g. [5,13]). This method reduces a 3D problem to multiple 2D problems and requires the calculation of an

inverse Fourier transform based on the 2D BEM solutions p2ðx; y; κÞ at different wavenumbers κ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2�α2

p
:

p3 x; y; z;Kð Þ ¼ 1
2π

Z 1

�1
p2 x; y; κð Þeiαzdα; (1)

where p3ðx; y; z;KÞ is the sound pressure of the three-dimensional scattering problem at the receiver node ðx; y; zÞ at the

desired wavenumber K in 3D. α denotes the wavenumber of the oscillation along the infinite dimension of the scatterer. The
2D solutions p2ðx; y; κÞ have an oscillatory behavior depending on the distance r between the sound source and the receiver

in the x–y-plane. This oscillation is, contrary to the Fourier oscillation term eiαz, not linear in the variable α. In [20], p2 was
interpolated with piecewise polynomials of degree 2. To have sufficient data points for an accurate interpolation an esti-
mation for the minimum frequency resolution of 5 BE calculations per period in κr was given. As an example, for a frequency
of 2000 Hz and a source–receiver distance of 50 m roughly 1500 BE problems need to be solved. In the original work of
Duhamel it was suggested that the interpolation may require less points if the demodulated function is interpolated using

the relation between the 2D-wavenumber κ, the integration variable α, and the source–receiver distance as a basis for
demodulation. The potential reduction in computational effort due to the demodulation has, to our knowledge, not been
fully investigated in the context of the 2.5D BEM yet.

In this work, we will use this demodulation approach and include it in an efficient quadrature scheme that deals ana-
lytically with the oscillatory terms without the need for explicit interpolation. For this, a number of existing algorithms are
combined and adapted to deal with the specific challenges that appear in connection with the 2.5D BEM.

In the following, the properties of the integral used in the 2.5D Helmholtz BEM will be outlined and the different
components of the quadrature scheme will be described. This encompasses a discussion about a suitable quadrature
algorithm for highly oscillatory integrands, methods to efficiently deal with the nonlinear oscillations of p2, an adaptive
order selection scheme, as well as a global error estimate. The properties and the efficiency of the new quadrature scheme
are investigated using two examples: a fully reflecting cylinder for which a semi-analytic expression exists and a noise
barrier.

2. Methods

2.1. The 2.5D boundary element method

In 1996, Duhamel [20] introduced a 2.5D method that allows to calculate the scattering effect of an infinitely long
structure caused by a point source. Essentially, the method utilizes a representation of the 3D-Green's function by its Fourier
transform:

eiK
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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where H0 denotes the Hankel function of the first kind:

H0 κ Jx�yJð Þ ¼ J0 κ Jx�yJð Þþ iY0 κ Jx�yJð Þ: (3)

x and y denote two points in the x–y-plane and Jx�yJ is the distance between those points. Conceptually, Eq. (2) can be
seen as a superposition of infinitely many line sources that exhibit oscillations along their length with different wave-
numbers α.

As a consequence, the 3D-problem can be reduced to a number of 2D-problems for different wavenumbers κ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2�α2

p
,

which are solved numerically using the BEM. The solution of the 3D-problem is then given by the inverse Fourier transform

over the 2D-solutions for different values of α (Eq. (1)). As BEM calculations are costly, it is necessary to design a quadrature

method for the back transform that keeps the number of evaluations of p2ðx; y;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2�α2

p
Þ small.

C.H. Kasess et al. / Journal of Sound and Vibration 382 (2016) 213–226214



Download English Version:

https://daneshyari.com/en/article/4924615

Download Persian Version:

https://daneshyari.com/article/4924615

Daneshyari.com

https://daneshyari.com/en/article/4924615
https://daneshyari.com/article/4924615
https://daneshyari.com

