

Contents lists available at ScienceDirect

Journal of Sound and Vibration

journal homepage: www.elsevier.com/locate/jsvi

Cascade trailing-edge noise modeling using a mode-matching technique and the edge-dipole theory

Michel Roger ^a, Benjamin François ^a, Stéphane Moreau ^{b,*}

- ^a École Centrale de Lyon, Laboratoire de Mécanique des Fluides et Acoustique, UMR CNRS 5509, 36 avenue Guy de Collongue, 69134 Ecully, France
- ^b Dept. Génie Mécanique, Sherbrooke University, Québec, Canada J1K 2R1

ARTICLE INFO

Article history: Received 4 January 2016 Received in revised form 11 June 2016 Accepted 27 June 2016 Handling Editor: P. Joseph Available online 16 July 2016

Keywords: Aeroacoustics Fan trailing-edge noise

ABSTRACT

An original analytical approach is proposed to model the broadband trailing-edge noise produced by high-solidity outlet guide vanes in an axial turbomachine. The model is formulated in the frequency domain and first in two dimensions for a preliminary assessment of the method. In a first step the trailing-edge noise sources of a single vane are shown to be equivalent to the onset of a so-called edge dipole, the direct field of which is expanded in a series of plane-wave modes. A criterion for the distance of the dipole to the trailing-edge and a scaling of its amplitude is defined to yield a robust model. In a second step the diffraction of each plane-wave mode is derived considering the cascade as an array of bifurcated waveguides and using a mode-matching technique. The cascade response is finally synthesized by summing the diffracted fields of all cut-on modes to yield upstream and downstream sound power spectral densities. The obtained spectral shapes are physically consistent and the present results show that upstream radiation is typically 3 dB higher than downstream radiation, which has been experimentally observed previously. Even though the trailing-edge noise sources are not vane-to-vane correlated their radiation is strongly determined by a cascade effect that consequently must be accounted for. The interest of the approach is that it can be extended to a threedimensional annular configuration without resorting to a strip theory approach. As such it is a promising and versatile alternative to previously published methods.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The design of many axial-flow fan stages involves a rotor and a downstream row of stationary outlet guide vanes called stators as shown in Fig. 1. The aerodynamic noise of the rotor–stator stage is caused by various aerodynamic interactions, all responsible for unsteadiness of the velocity relative to the blades/vanes. According to Ffowcs Williams and Hawkings' acoustic analogy and for subsonic Mach numbers, sound mainly originates from the fluctuating lift forces that result from this unsteadiness, all acting as equivalent dipoles [1].

The main manifestation of this generic mechanism is the wake-interaction noise produced as the wakes of the rotor blades impinge on the stator vanes. The mean velocity deficit and the turbulence in the wakes generate tonal noise and broadband noise, respectively, the sources of which are distributed on the vanes. Similarly, stationary inflow distortions and ingested turbulence at inlet are the origin of tonal and broadband noise generated by the rotor blades. Independently the

^{*} Corresponding author.

a constant \mathbf{v}_K^h hydrodynamic velocity associated to the Kutta \overline{a}_j, a_j pressure and potential coefficients for plane waves (x, y) axial and transverse Cartesian coordinates A_m^j, B_s^j transmitted and reflected mode amplitudes, single interface (x, y) axial and transverse Cartesian coordinates c chord lengthscattered transverse wavenumbers of transmitted/reflected waves c sound speedmitted/reflected waves D_m^0, U_m^0 downstream and upstream mode amplitudes in the channels $\beta = \sqrt{1 - M_0^2}$ pressure and axial-velocity vector E, F Fresnel integral and related function h δ_1 displacement thickness h inter-vane channel height $k = \omega/c_0$ ϕ acoustic potential wall-pressure power spectral density	Nomenclature V		V	vane number
				acoustic axial velocity
waves waves (x,y) axial and transverse Cartesian coordinates X_m^j, B_s^j transmitted and reflected mode amplitudes, single interface coordinates arisingle interface coordinates $X = x/\beta$ scaled coordinate $X = x/\beta$ scaled co	а	constant	\mathbf{v}_K^h	
waves A_m^j, B_s^j transmitted and reflected mode amplitudes, single interface A_m^j, B_s^j transmitted and reflected mode amplitudes, single interface A_s^j scaled coordinate scattered transverse wavenumbers of transmitted/reflected waves A_s^j compressibility parameter A_s^j compressibility parameter A_s^j displacement thickness A_s^j acoustic potential A_s^j acoustic potential A_s^j acoustic wavenumber A_s^j wall-pressure power spectral density A_s^j dimensionless wall-pressure power spectral density A_s^j incident axial wavenumber A_s^j effective axial wavenumber A_s^j effective axial wavenumber A_s^j fluid density A_s^j effective axial wavenumber A_s^j fluid density A_s^j angular frequency A_s^j wall-pressure spanwise coherence length A_s^j dimensionless angular frequency A_s^j vorticity vector generated by the Kutta A_s^j vorticity vector generated by the Kutta A_s^j condition A_s^j and superscripts A_s^j scaled coordinates around an edge A_s^j scaled coordinate A_s^j scaled coordinate A_s^j scaled coordinates A_s^j scaled coordi	\overline{a}_i, a_i	pressure and potential coefficients for plane		
single interface chord length sound speed D_m^0, U_m^0 downstream and upstream mode amplitudes in the channels D_m^0, U_m^0 downstream and upstream mode amplitudes in the channels D_m^0, U_m^0 downstream and upstream mode amplitudes in the channels D_m^0, U_m^0 downstream and upstream mode amplitudes in the channels D_m^0, U_m^0 compressibility parameter D_m^0, U_m^0 compressibility parameter D_m^0, U_m^0 compressibility parameter D_m^0, U_m^0 compressibility parameter D_m^0, U_m^0 displacement thickness device D_m^0, U_m^0, U_m^0 displacement thickness device $D_m^0, U_m^0, U_m^0, U_m^0, U_m^0$ displacement thickness device $D_m^0, U_m^0, U_m^0, U_m^0, U_m^0, U_m^$		waves	(x, y)	axial and transverse Cartesian coordinates
single interface α_s scattered transverse wavenumbers of transmitted/reflected waves α_s scattered transverse wavenumbers of transmitted/reflected waves α_s sound speed α_s sound spee	A_m^j, B_s^j	transmitted and reflected mode amplitudes,	$X = x/\beta$	scaled coordinate
cchord lengthmitted/reflected waves c_0 sound speed $\beta = \sqrt{1 - M_0^2}$ compressibility parameter D_m^0, U_m^0 downstream and upstream mode amplitudes in the channels $\beta = \sqrt{1 - M_0^2}$ compressibility parameter E, F Fresnel integral and related function inter-vane channel height δ_1 displacement thickness h inter-vane channel height ϕ acoustic potential $k = \omega/c_0$ acoustic wavenumber ϕ_{pp} wall-pressure power spectral density $K = k/\beta$ scaled wavenumber ψ_{pp} dimensionless wall-pressure power spectral density K_m incident axial wavenumber ϕ_0 fluid density K_s^i effective axial wavenumbers of reflected/ transmitted waves ω angular frequency ℓ_y wall-pressure spanwise coherence length ω aimensionless angular frequency L vane spanwise extent ω ω dimensionless angular frequency M_0 axial Mach number ω dimensionless angular frequency r_c radius of the unwrapped cut of the stator ω ω ω $(r_0, \theta_0), (r, \theta)$ source and observer cylindrical coordinates ω ω	3		α_s^{\prime}	scattered transverse wavenumbers of trans-
D_m^0, U_m^0 downstream and upstream mode amplitudes in the channels Γ pressure and axial-velocity vector Γ displacement thickness Γ displacement thickness Γ pressure and axial-velocity vector Γ pressure and axial-velocity vector Γ displacement thickness Γ displace	С			mitted/reflected waves
D_m^0, U_m^0 downstream and upstream mode amplitudes in the channels Γ pressure and axial-velocity vector Γ displacement thickness Γ displacement thickness Γ pressure and axial-velocity vector Γ pressure and axial-velocity vector Γ displacement thickness Γ displace	c_0	sound speed		
in the channels E,F Fresnel integral and related function h inter-vane channel height $k = \omega/c_0$ acoustic wavenumber $K = k/\beta$ scaled wavenumber $K = k/\beta$ scaled wavenumber in the channels K_m incident axial wavenumber K_s^j effective axial wavenumbers of reflected/ $transmitted$ waves ℓ_y wall-pressure spanwise coherence length ℓ_y wall-pressure spanwise extent ℓ_y wall-pressure spanwise coherence length ℓ_y wall-pressure spanwise extent ℓ_y wall-pressure spanwise extent ℓ_y wall-pressure spanwise coherence length ℓ_y worticity vector generated by the Kutta condition ℓ_y vorticity vector generated by the Kutta condition ℓ_y vorticity vector generated by the Subscripts and superscripts ℓ_y vorticity vector generated by the Subscripts and superscripts ℓ_y vorticity vector generated by the Subscripts and superscripts ℓ_y vorticity vector generated by the Subscripts and superscripts	D_{m}^{0}, U_{m}^{0}	downstream and upstream mode amplitudes	$\beta = \sqrt{1}$	$-M_0^2$ compressibility parameter
$\begin{array}{llllllllllllllllllllllllllllllllllll$			_	pressure and axial-velocity vector
$\begin{array}{llll} h & & & & & & \\ k = \omega/c_0 & & & & & \\ acoustic wavenumber & & & & \\ K = k/\beta & & & & \\ Scaled wavenumber & & & & \\ K_m^{(j)} & & & & \\ axial wavenumber & & & \\ K_m & & & & \\ incident axial wavenumber & & \\ K_s^{(j)} & & & \\ effective axial wavenumber & & \\ T_s^{(j)} & & & \\ effective axial wavenumber & & \\ &$	E, F	Fresnel integral and related function	δ_1	displacement thickness
$k = \omega/c_0$ acoustic wavenumber \mathcal{P}_{pp} wall-pressure power spectral density $\mathcal{K} = k/\beta$ scaled wavenumber $\mathcal{K}^{(j)}$ axial wavenumber in the channels \mathcal{K}_m incident axial wavenumber $\mathcal{K}_s^{(j)}$ effective axial wavenumbers of reflected/ transmitted waves \mathcal{E}_s wall-pressure spanwise coherence length \mathcal{E}_s wall-pressure spanwise extent \mathcal{E}_s vorticity vector generated by the Kutta \mathcal{E}_s vorticity of \mathcal{E}_s vorticity $$	h	inter-vane channel height	ϕ	acoustic potential
$K^{(j)}$ axial wavenumber in the channels K_m incident axial wavenumber ρ_0 fluid density \overline{K}_s^j effective axial wavenumbers of reflected/ σ constant transmitted waves ω angular frequency ω wall-pressure spanwise coherence length $\overline{\omega}$ dimensionless angular frequency ω vorticity vector generated by the Kutta ω axial Mach number ω condition ω acoustic pressure ω radius of the unwrapped cut of the stator ω constant ω angular frequency ω dimensionless angular frequency ω vorticity vector generated by the Kutta ω condition ω condition ω acoustic pressure ω radius of the unwrapped cut of the stator ω condition ω source-point coordinate ω condition ω	$k = \omega/c_0$		$oldsymbol{\Phi}_{ m pp}$	wall-pressure power spectral density
$K^{(j)}$ axial wavenumber in the channels K_m incident axial wavenumber ρ_0 fluid density \overline{K}_s^j effective axial wavenumbers of reflected/ σ constant transmitted waves ω angular frequency ω wall-pressure spanwise coherence length $\overline{\omega}$ dimensionless angular frequency ω vorticity vector generated by the Kutta ω axial Mach number ω condition ω condition ω condition ω constitution ω constitution ω condition ω consisting ω condition ω condition ω condition ω consisting ω consisting ω condition ω condition ω consisting ω consisting ω condition ω condition ω consisting ω condition ω condition ω consisting ω consisting ω condition ω condition ω consisting ω consisting ω condition ω condition ω consisting ω consistin	$K = k/\beta$	scaled wavenumber	$\Psi_{ m pp}$	dimensionless wall-pressure power spectral
\overline{K}_s^l effective axial wavenumbers of reflected/ transmitted waves ω angular frequency ω angular frequency ω angular frequency ω dimensionless angular frequency ω dimensionless angular frequency ω vorticity vector generated by the Kutta ω axial Mach number ω acoustic pressure ω condition ω condition ω condition ω axial Mach number ω condition ω				density
\overline{K}_s^l effective axial wavenumbers of reflected/ σ constant transmitted waves ω angular frequency ℓ_y wall-pressure spanwise coherence length ω dimensionless angular frequency ω dimensionless angular frequency ω vorticity vector generated by the Kutta ω axial Mach number ω condition ω c	K_m	incident axial wavenumber	$ ho_0$	fluid density
transmitted waves ω angular frequency ω dimensionless angular frequency ω dimensionless angular frequency ω dimensionless angular frequency ω dimensionless angular frequency ω vane spanwise extent ω vorticity vector generated by the Kutta ω condition ω axial Mach number ω condition ω acoustic pressure ω radius of the unwrapped cut of the stator ω condition ω acoustic pressure ω radius of the unwrapped cut of the stator ω condition ω acoustic pressure ω radius of the unwrapped cut of the stator ω condition ω angular frequency ω dimensionless angular frequency ω dimensionless angular frequency ω angular frequency ω dimensionless angular frequency ω	\overline{K}_{s}^{j}	effective axial wavenumbers of reflected/	σ	constant
L vane spanwise extent $\Omega_{\mathbf{K}}$ vorticity vector generated by the Kutta M_0 axial Mach number condition p,p_0 acoustic pressure r_c radius of the unwrapped cut of the stator $(r_0,\theta_0),(r,\theta)$ source and observer cylindrical coordinates around an edge $(-)_0$ source-point coordinate	3	transmitted waves	ω	angular frequency
L vane spanwise extent $\Omega_{\mathbf{K}}$ vorticity vector generated by the Kutta M_0 axial Mach number condition p,p_0 acoustic pressure r_c radius of the unwrapped cut of the stator $(r_0,\theta_0),(r,\theta)$ source and observer cylindrical coordinates around an edge $(-)_0$ source-point coordinate	$\ell_{ m v}$	wall-pressure spanwise coherence length	$\overline{\omega}$	
p, p_0 acoustic pressure r_c radius of the unwrapped cut of the stator $(r_0, \theta_0), (r, \theta)$ source and observer cylindrical coordinates around an edge $(-)_0$ source-point coordinate	L	vane spanwise extent	Ω_{K}	vorticity vector generated by the Kutta
r_c radius of the unwrapped cut of the stator Subscripts and superscripts $(r_0, \theta_0), (r, \theta)$ source and observer cylindrical coordinates around an edge $(-)_0$ source-point coordinate	M_0	axial Mach number		condition
$(r_0, \theta_0), (r, \theta)$ source and observer cylindrical coordinates around an edge $(-)_0$ source-point coordinate	p, p_0	acoustic pressure		
nates around an edge $(-)_0$ source-point coordinate	r_c	radius of the unwrapped cut of the stator	Subscript	ts and superscripts
()() =======	$(r_0, \theta_0), (r_0, \theta_0)$	(θ,θ) source and observer cylindrical coordi-		
			$(-)_{0}$	source-point coordinate
	$(\overline{r}_0,\overline{\theta}_0),(\overline{r}_0)$	$\overline{r}, \overline{\theta}$) same coordinates corrected for convection	$(-)^0$	
\overline{R} corrected source-to-observer distance $(-)_i$ incident wave index	\overline{R}	corrected source-to-observer distance		incident wave index
R_s, T_s reflected and transmitted mode amplitudes, $(-)_m$ channel mode index	R_s, T_s	reflected and transmitted mode amplitudes,		channel mode index
double interface $(-)_{K}$ Kutta-condition associated quantity		double interface		Kutta-condition associated quantity
R_1, R_2 hub and tip radii $(-)_s$ reflected or transmitted wave index	R_1, R_2	hub and tip radii		
t time $(-)_{i,r,t,u,d}$ incident, reflected, transmitted, upstream and	t	time		incident, reflected, transmitted, upstream and
U_r, U_a inlet and outlet velocities of a stator vane downstream potentials	U_r, U_a	inlet and outlet velocities of a stator vane	. ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
U_0 reference freestream velocity $(-)^\pm$ for downstream/upstream wavenumbers	U_0	reference freestream velocity	$(-)^{\pm}$	

turbulent boundary layers developing on the blades and the vanes are scattered as sound at the trailing edges, also contributing to the broadband noise. Finally secondary flows such as tip-leakage vortices generate their own unsteadiness and associated noise. The aforementioned trailing-edge noise sources are not blade-to-blade or vane-to-vane correlated, which means that the sound is generated in the same way as for an isolated airfoil. But the sound radiation away from the trailing-edge area is more or less dramatically restructured by multiple scattering on adjacent blades/vanes. This restructuration referred to as the cascade effect is the main motivation of the present work. The emphasis is on the trailing-edge noise of the stator, though the same approach could be transposed to a rotor as explained later on.

In most architectures such as depicted in Fig. 1 the outlet guide vanes are moderately cambered and staggered at leading edge, and nearly parallel to the axis at trailing edge. Indeed they are designed to restore an axial mean flow of speed U_a from the incident swirl produced by the rotor and emphasized by the oblique relative speed of magnitude U_r in the figure. As a result the vanes have a large overlap and can be viewed from downstream as an array of parallel and zero-stagger plates. When trying to reproduce aeroacoustic phenomena using analytical approaches, the cascade effect of the stator appears as a key feature to deal with. The cascade effect is not only involved in the sound generation process but also when the sound generated by the rotor blades is transmitted downstream in the exhaust duct, especially for stators with a large number of vanes and quite large hub-to-tip ratios R_1/R_2 . Many studies contributed to the development of analytical or semi-analytical cascade response functions for sound generation or transmission in blade rows [2-24]. The approach developed by Glegg [15] and later improved by Posson et al. [23] is selected here for the discussion. But only wake-interaction noise or turbulence-impingement noise is generally considered. The cascade effect on the trailing-edge noise mechanism is more difficult to formulate even though an attractive and elegant approach has been proposed by Glegg and Jochault [25]. The issue is that trailing-edge noise sources are localized and poorly correlated, which makes them difficult to describe in a cascade context. Though only outlet guide vanes are considered in the present work, the same would hold for the blades of a rotor except that most often the overlap is smaller, at least in the tip region of the blades, and that the number of blades is also smaller. Furthermore the stagger angle of the blades is quite large. The case of the stator is chosen here because the

Download English Version:

https://daneshyari.com/en/article/4924621

Download Persian Version:

https://daneshyari.com/article/4924621

<u>Daneshyari.com</u>