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A B S T R A C T

This short communication extends the previous method for generating correlated synthetic mean wind data with a
Rayleigh parent to the case where the parent can be a Forward Weibull distribution of arbitrarily chosen index
with arbitrarily chosen auto-correlation.

1. Introduction

All countries that are members of the W.M.O. produce wind statistics
in the form of meanwind speeds taken over an averaging time of between
10min and 1 h. In the UK an averaging period of an hour is used so, for
convenience in all that follows, means will be described as hourly means,
with the understanding that in other countries where a different aver-
aging period is used, that average is implied.

There is a considerable body of empirical evidence which suggests
that a good model for the probability distribution of hourly mean wind
speeds, particularly those arising from extra-tropical depressions, is the
Forward Weibull form with an index lying between 1.8 and 2.2. In a
recent paper, Harris and Cook(2014) introduced a new distribution, the
Offset Elliptic Normal(OEN), which allows the hourly mean wind vectors
at any site and arising from combinations of physical causes to be
modelled as a combination of these OEN distributions, one distribution
for each physical cause. They also showed that the wind speeds from such
a combination can always be accurately modelled by a combination of
Forward Weibull distributions, all with indexes in the range between 1.8
& 2.2. The middle of this range is a Forward Weibull with index 2,
otherwise known as a Rayleigh distribution. Production of design wind
speeds for insertion in building codes requires some form of extreme
value analysis of measured wind speeds. Verifying the accuracy of any
suchmethod using real measured data is difficult, because the true parent
distribution of measured data is always unknown and even now it is rare
to have available a record more than fifty years long. With records of this
length, the sampling errors are likely to swamp the potential defects

being investigated. Thus there is considerable merit in first testing
extreme value methods on synthetic data of known parent distribution
and auto-correlation. In a recent paper Harris (2014) presented a method
for simulating data from a Rayleigh parent distribution with an arbitrary
auto-correlation. The objective of the present paper is to demonstrate
how this method can be extended to generate a time series, still of
arbitrary auto-correlation, but with a parent distribution of general
Forward Weibull form.

2. Summary of method used to produce simulated wind speeds
with a Raleigh parent

The method described in Harris (2014) relies on the result that if x(t)
and y(t) are two independent N(0,1) random sequences, each with an
auto-correlation ρ(τ) and are regarded as Cartesian components of a
2-dimensional vector, then the modulus of that vector, r(t), has a CDF
given by:

PðrÞ ¼ 1� exp
�� r2

�
2
�

(2.1)

where:

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx2 þ y2Þ

p
(2.2)

Note that since this relationship is non-linear, the relationship be-
tween ρ(τ), the auto-correlation of the components x(t) and y(t), and
ζ(τ), the auto-correlation of the modulus r(t), is not simple. In Harris
(2014) it is shown that for any value of the timelag, τ:
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ζðτÞ ¼ 2F1

�� 1
2;�1

2; 1; ρ
2ðτÞ�� 1

4=π � 1
(2.3)

where the 2F1 is the Gauss Hypergeometric Function. [See Harris (2014)
for details].

Thus, given a choice of the target auto-correlation, ζ(τ), which can
be arbitrary, ρ(τ), the required auto-correlation for the x- and y-com-
ponents can be calculated from (2.3). This calculation has to be done
only once/simulation. Thus given two sequences of N(0,1) random
numbers independent of one another and also serially independent,
each sequence is transformed into x(t) or y(t) with an auto-correlation
ρ(τ), by applying an auto-regressive and/or moving average trans-
formation [See Box et al., 2008] and then combined according to (2.2)
to yield a sequence r(t) with auto-correlation ζ(τ) and CDF given
by (2.1).

3. Generalisation to produce simulated wind speeds with an
arbitrary Forward Weibull parent and auto-correlation

When a Forward Weibull parent CDF is used to fit measured data, it is
usually in the form:

PðVÞ ¼ 1� exp½ � ðV=CÞw� (3.1)

Here w is the Weibull index and C the scale parameter. Since the
sequence r(t) produced by the computer simulation is dimensionless, it
is useful to introduce the dimensionless variable z ¼ V/C, so that the
CDF becomes:

PðzÞ ¼ 1� exp½�ðzwÞ� (3.2)

Comparison of this result with (2.1) gives:

z ¼
�

rffiffiffi
2

p
	2=w

(3.3)

¼
�
x2 þ y2

2

	1=w

(3.4)

Thus, from any sequence r(t) with a Rayleigh CDF generated by the
method described in Harris (2014), a sequence z(t) with a Weibull CDF
with index w, can be obtained by applying the transformation (3.3) to
each member of the sequence. However, (3.4) shows that the relation
between z(t) and the components x(t) and y(t) is also non-linear, and is
not the same as (2.2) for r(t). Therefore if z(t) is to have the target
auto-correlation, ζ(τ), then the auto-correlation of the components, ρ(τ),
needs to be changed by amending (2.3).

From (3.2) the probability density of z(t) is given by:

pðzÞ ¼ wzw�1 expð�zwÞ (3.5)

Gradshteyn & Ryzhik (1994) give:

∫ ∞
0 x

ν�1 expð�xpÞdx ¼ 1
p
Γ
�
ν

p

	
(3.6)

and thus if < > denotes the expectation operator:

〈z〉 ¼ ∫ ∞
0 zpðzÞdz ¼ Γð1þ 1=wÞ (3.7)

and:

〈z2〉 ¼ ∫ ∞
0 z

2pðzÞdz ¼ Γð1þ 2=wÞ (3.8)

In Harris (2014) it is shown that if r(t) is a stationary random
sequence with a Rayleigh CDF, and r1 & r2 are any two members of that
sequence separated by a time lag Δτ, then the second order joint pdf of r1
& r2 is given by:

pðr1; r2Þ ¼ r1r2
ð1� ρ2Þ exp


��
r21 þ r22

�
2ð1� ρ2Þ

�
I0



r1r2ρ

ð1� ρ2Þ
�

(3.9)

I0 is a modified Bessel Function of the first kind and for brevity ρ is
used to denote ρ(Δτ).

It then follows that if z1 & z2 are two values of the Weibull sequence
z(t) corresponding to r(t) via (3.3), then:

〈z1z2〉 ¼ ∫ ∞
0 ∫

∞
0

1
2ð2=wÞ

rð1þ2=wÞ
1 rð1þ2=wÞ

2

ð1� ρ2Þ exp

��

r21 þ r22
�

2ð1� ρ2Þ
�
I0



r1r2ρ

ð1� ρ2Þ
�
dr1dr2

(3.10)

To evaluate the integrals in (3.10), the Bessel function is expanded
into its series representation, Gradshteyn & Ryzhik (1994):

I0



r1r2ρ

ð1� ρ2Þ
�
¼

X∞
k¼0

1
Γð1þ kÞΓð1þ kÞ

�
r1r2ρ

2ð1� ρ2Þ
	2k

(3.11)

It is also useful to introduce the changes of variables:

λ1 ¼ r1
. ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ð1� ρ2
p

λ2 ¼ r2
. ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ð1� ρ2Þ
p

(3.12)

These changes lead to:

〈z1z2〉 ¼ 4
�
1� ρ2

�1þ2=w X∞
k¼0

ρ2k

Γð1þ kÞΓð1þ kÞ∫
∞
0 λ

ð2kþ1þ2=wÞ
1

exp
��λ21

�
dλ1∫

∞
0 λ

ð2kþ1þ2=wÞ
2 exp

��λ22
�
dλ2

(3.13)

Again use is made of result (3.6) from Gradshteyn & Ryzhik (1994),
with p ¼ 2 and ν ¼ (2kþ2 þ 2/w), and leads to:

〈z1z2〉 ¼
�
1� ρ2

�1þ2=w X∞
k¼0

ρ2kΓðk þ 1þ 1=wÞΓðk þ 1þ 1=wÞ
Γð1þ kÞΓð1þ kÞ (3.14)

¼ �
1� ρ2

�1þ2=wΓð1þ 1=wÞΓð1þ 1=wÞ2F1

�
1þ 1=w; 1þ 1=w; 1 ; ρ2

�
(3.15)

¼ Γð1þ 1=wÞΓð1þ 1=wÞ2F1

�� 1=w; �1=w; 1 ; ρ2
�

(3.16)

Here the 2F1 denotes the Gauss Hypergeometric Function which is
defined by a power series. (3.15) follows from (3.14) by virtue of this
definition, and the simplification to (3.16) follows from a further result
for this function. [See (Gradshteyn and Ryzhik, 1994) for the derivation
of all three of these results].

By definition, ζ(τ), the auto-correlation of z(t), is given by:

ζðτÞ ¼ 〈z1z2〉� 〈z〉〈z〉
〈z2〉� 〈z〉〈z〉

(3.17)

so that from (3.7), (3.8) and (3.16):

Γð1þ1=wÞΓð1þ1=wÞ2F1ð�1=w;�1=w;1;ρ2ðτÞÞ�Γð1þ1=wÞΓð1þ1=wÞ
Γð1þ2=wÞ�Γð1þ1=wÞΓð1þ1=wÞ

¼ζðτÞ
(3.18)

(3.18) can be further simplified by using identities for the Hyper-
geometric and Gamma Functions available in Gradshteyn & Ryzhik
(1994). If the function R(w) is defined as:

RðwÞ ¼ 2wΓð2=wÞ�½Γð1=wÞ�2 (3.19)

Then (3.18) reduces to:

2F1½ð � 1=w;�1=w; 1; ρ2ðτÞ� � 1
RðwÞ � 1

¼ ζðτÞ (3.20)
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