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According to the limited wind tunnel test results to obtain detailed data of surface wind pressure on buildings has
important significance for the accurate calculation of cladding wind pressure and wind-induced response of
structures. In this paper, a backpropagation neural network (BPNN) combined with proper orthogonal decom-
position (POD-BPNN) is proposed for the prediction of the mean, root-mean-square (RMS) pressure coefficients
and the time series of wind-induced pressures on a building surface, respectively. In this study, simultaneous
pressure measurements are made on a high-rise building model in a boundary layer wind tunnel and parts of the

model test data are used as the training input—output sets for BPNN and POD-BPNN models. Comparisons of the
prediction results by the POD-BPNN approach and those from the wind tunnel test demonstrate that the BPNN
combined with POD method can successfully and efficiently predict the time series of pressure data on all surfaces
of a high-rise building on the basis of wind tunnel pressure measurements from a certain number of pressure taps.

1. Introduction

With the development of construction technology and engineering
materials, more super tall buildings and large-span roof structures have
been built all over the world. These structures are super-flexible, light-
weight, have low damping ratios, and low fundamental frequencies,
which make them very sensitive to wind load. Under the action of strong
typhoons, failures in glass curtain walls and roofs have happened
frequently, and the fact that such structures suffer strong wind-induced
vibration is commonplace. Therefore, it is necessary to understand the
detailed characteristics of such wind effects on such structures.

In design of some slender structures such as super-tall, large-span roof
structures, and so on, usually it is necessary to obtain more detailed wind
load information: this generally comes from wind tunnel tests of rigid
model pressure measurement. In these wind tunnel tests, to obtain suf-
ficient detailed wind load characteristics to meet the requirements of
engineering design and research, enough measurement points should be
placed on the surface of the model. With the progress of synchronous
acquisition technology for pressure scanning valves, it is not a significant
problem to obtain synchronous wind pressure time histories for more
than 1000 points on a rigid model in a wind tunnel test; however, with
some of the more complex high-rise buildings (Huang et al., 2014,
2015a) and large span structures (Fu et al., 2007), the number of points is

still far from the design requirement. In addition, for some dynamic tests
with simultaneous pressure measurement, it is inappropriate to arrange
too many points on the model which would cause data distortion (Kato
and Kanda, 2014). Therefore, it is necessary to explore effective ways to
predict, or extend, the wind-induced pressures on the entire surface of a
structure according to the limited pressure data from the taps.

At present, there are many ways to build a multi-variable linear/
nonlinear forecasting model, such as inverse distance weighting (IDW)
(Lu and Wong, 2008), kriging (Franke, 1982), regression polynomials
(e.g. ARMA) (Kho et al.,, 2002), artificial neural networks (ANNs)
(Turkkan and Srivastava, 1995), etc. In these methods, the conventional
IDW method has relatively simple and fixed forecasting model, which
simplifies the interpolation process, however makes it not well adaptive
to the variation of wind pressure distribution of different regions and
different structures; the kriging method, based on the theory of spatial
statistics, uses the variogram to measure the spatial correlation and
weight of near sampling points, thereby it can well adapt to the variation
of wind pressure distribution. However, the variation function should be
selected by human experience, and when the variance function is a
combination, it is difficult to select and the amount of calculation is
increased; the regression polynomials is a most commonly used method
for selecting different empirical formula to accommodate to the wind
pressure distribution with different characteristics, however, when many
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parameters are involved, it is very difficult to obtain an ideal empirical
formula for the function form between them is complicated and un-
known. Fortunately, ANNs with multilayer perceptrons are the equal of a
multi-mapping black box analysis function (Turkkan and Srivastava,
1995), which can describe the complex and non-linear functional re-
lationships of a large number of parameters by training some
input-output pairs from tests, even with noisy or incomplete information
(Haykin, 1999): thus it has the characteristics of self adjustment and
robustness and has been widely used in interpolation problems in various
fields (Chen et al., 2003; Yu and Xu, 2014; Ahmed et al., 2015). At the
same time, ANNs in some wind engineering interpolation problems are
also gradually becoming more widely used. For example, to investigate
wind interference between tall buildings (Khanduri et al., 1997; English
and Fricke, 1999), to predict the mean and root-mean-square (RMS)
pressure coefficients on gable roofs of low-rise buildings and large span
space structures (Chen et al., 2003; Fu et al., 2007; Gavalda et al., 2011),
and even to predict the wind-induced pressure time series on structures
(Chen et al., 2002; Fu et al., 2007), and so on (Chen et al., 2008, 2016;
Wu, and Kareem, 2011).

Although a neural network can commendably predict the mean and
RMS wind pressures on the structure, it is inadequate to predict the wind
pressure time series for too enormous input-output trained data set with
time parameter t. Therefore, it is necessary to seek an appropriate method
to transform the time-variant wind pressure field and then to let the
input-output trained data of the ANN be time-independent. Proper
orthogonal decomposition (POD) is just one of the approaches based on
this objective. Using POD, spatially-distributed multivariable random
loads can be reconstituted through a linear combination of a series of
orthogonal load modes (Azam and Mariani, 2013) weighted by the cor-
responding, unrelated modal coordinates (i.e. loading principal co-
ordinates), respectively. The orthogonal load modes are space-related
and time-independent, and the loading principal coordinates are
time-varying and space-independent. The POD involves a covariance
proper transformation (CPT) and uses proper vectors to form a covari-
ance matrix of random fluctuating wind loads at zero time lag as the load
modes. Armitt (1968) and Lumley (1970) firstly introduced the POD
technique to deal with turbulence and wind-related issues. Subsequently,
some researchers used POD in reconstructing wind fields (Tamura et al.,
1999; Bienkiewicz et al., 1995; Holmes et al., 1997), finding some sys-
tematic structures hidden in the random fields (Kikuchi et al., 1997;
Wang and Zhou, 2014), and calculating structural wind-induced re-
sponses (Solari and Carassale, 2000; Solari et al., 2007; Carassale et al.,
2007; Huang et al., 2015Db).

In our work, a back-propagation neural network (BPNN), combined
with a proper orthogonal decomposition (POD-BPNN) approach is used
for the prediction of the mean, the root-mean-square (RMS) pressure
coefficients, and even the time series of wind-induced pressures on a
structure, respectively. A high-rise building is taken as an example to
conduct wind tunnel testing to obtain wind-induced pressure data for
training, and then it is used to show the validity of POD-BPNN for the
prediction of wind-induced pressures, not only the statistics relating to
the pressure data but also the time series, the spectra, and the coherence
functions thereof.

2. Wind tunnel experiments
2.1. Overview of experiments

Wind tunnel experiments were carried out in the boundary layer wind
tunnel at Central South University in China, which belongs to the High-
speed Railway Construction Technology National Engineering Labora-
tory. It is a double test section reflux type wind tunnel, in which, the low
speed test section is with a working section of 12 m width, 3.5 m height,
and 18 m length, with a wind speed of 2-18 m/s (continuously adjust-
able), and the high-speed test section is with a working section of 3 m
width, 3 m height, and 15 m length, with a wind speed of 2-90 m/s
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(continuously adjustable). All the experiments in this paper are carried
out in the high-speed test section.

Fig. 1 shows a photo of the model (a square building) mounted in the
wind tunnel. The wind field and model were all made with a geometric
length scale of 1:350. As shown in Fig. 1, spires, grids, and roughness
elements were used to simulate a boundary layer wind flow of urban
terrain type stipulated in the Load Code of China (2012) as exposure C
category. This terrain type specifies a mean wind speed profile with a
power law exponent of a = 0.22. The non-dimensional measured mean
wind speeds profile, longitudinal turbulence intensities profile, and
lateral turbulence intensities profile are shown in Fig. 2(a) and (b), and
(c), respectively (the reference point is located at 1.2 m and the corre-
sponding wind speed is 14 m/s). Meanwhile, the mean wind speeds
profile stipulated in the Load Code of China (2012) and the turbulence
intensity profile stipulated in the Japanese Load Code (ALJ, 1996) are
also shown in Fig. 2(a) and (b), respectively. As seen, the simulated wind
field is in good agreement with theoretical requirements. Moreover, the
spectra of longitudinal and lateral wind speeds at the reference point
(gradient wind height) are shown in Fig. 2(d) and (e), respectively, which
match the von Karman type spectrum. In addition, longitudinal and
lateral turbulence integral scales are shown in Fig. 2 (f) and (g),
respectively. According to the scale ratio, they are corresponding to
60-200 m and about 70 m of the actual wind field, respectively. That is
consistent with the actual situation. Moreover, it can be noted that the
vertical profiles of the u-turbulence intensity and integral length scale are
both greater than v-ones, and the u-and v-turbulence intensities and the
u-integral length scale decrease as height increases, the v-integral length
scale basically does not vary with altitude.

The size and pressure measuring taps arrangement of the model are
shown in Fig. 3. The model height is about 1.4 m and width is about
0.163 m (the wind tunnel obstruction is about 2.5% (less than 5%), and
the blockage effect thereof is negligible). There are 14 measurement
layers on the model, on each of which is arranged 36 measuring points
and the position of each layer is consistent (a total of 504 taps). In this
way, label M10-1 represents the measured value of the 1st measured
point in the 10th layer. To evaluate the prediction effect of the method
proposed in our paper for surface wind pressure with limited measure-
ment points, it is firstly necessary to determine which data are to be used
for training, and which data for prediction. As shown in Fig. 3, the
measurement points labeled ‘@’ were accepted as training data (a total of
120 points), and those marked as ‘O’ were untrained but can be used as
verified data for the prediction results by the proposed POD-BPNN
approach only using the limit training data. The electronic scanvalve
(ZOC-33, produced by Scanivalve Company in United States) is used to
gather wind pressures, its gathering frequency is 625 Hz, and the each

Fig. 1. Rigid model pressure measurement wind tunnel test.
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