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A B S T R A C T

The aeroelastic responses of a bridge deck was numerically simulated using a fluid-structure interaction (FSI)
model, whose accuracy was verified by the flutter responses of a thin plate with theoretical solutions. With the
increase of attack angle, the deck section becomes much blunter, which leads to be more prone to limit cycle
flutter (LCF). The LCF phenomena for a bridge deck were simulated by the present numerical model. The satis-
factory accuracies of the numerical simulations are verified by comparing with the experimental results. The
numerically calculated results show that the steady-state responses of the vertical-torsional coupled LCF are in-
dependent of the initial excitation conditions. The structural damping has remarkable influence on the critical
wind speed and the LCF amplitude. The phase angle difference between the torsional and vertical motions slightly
increases with the increase of wind speed. The developed numerical simulation approach can help to serve as a
building block for developing an overall analysis framework for investigating the LCF characteristics of long-span
bridges.

1. Introduction

For long-span flexible bridges, flutter is the most dangerous wind-
induced divergent vibration, which should be strictly prohibited.
Conventionally, in order to determine the critical flutter state of bridges,
a large amount of flutter analyses, e.g. the Great Belt Bridge (Larsen and
Walther, 1997), the Akashi-Kaikyo bridge (Katsuchi et al., 1998), the
Golden Gate bridge (Jain et al., 1998), and the Messina Strait Bridge
(Diana et al., 2004), have been conducted based on Scanlan's linear self-
excited forces model (Scanlan and Tomko, 1971), in which the bridge
deck undergoes harmonic vibration with net zero damping at the critical
flutter state, and further increase of wind speed will result in catastrophic
divergent vibration. This kind of flutter is classified as the divergent type.

According to the Scanlan's linear model, the self-excited forces are the
linear functions of deckmotions and flutter derivatives. Actually, the self-
excited forces inevitably contain nonlinear components due to the bluff
configurations and large amplitudes, and therefore, nonlinear aeroelastic
phenomenon may be observed for some cases of bridge flutter. For
numerous wind tunnel tests on bluff and/or streamlined deck sections
with large attack angles, when the wind speed is sufficiently high, the
decks experience limit cycle oscillations (LCOs), rather than the diver-
gent flutter (Xu and Chen, 2009; Long, 2010; Zhu and Gao, 2015). This
kind of oscillation can be classified as the limit cycle flutter (LCF), and the

steady-state vibration amplitudes vary with wind speeds. Similar aero-
elastic phenomenon can be observed in the field of aeronautics and as-
tronautics engineering, e.g., in a wide variety of aircraft during flights
(Cunningham, 2003), in wind tunnel tests (Majid and Basri, 2008;
Amandolese et al., 2013), and in numerical simulations (Tang et al.,
2003; Wang and Zha, 2011). For aircraft wings, large attack angles can
induce the flow separation from the suction surface, and they are prone
to experience LCOs due to the aerodynamic nonlinearities.

Recently, the LCF phenomena for bridge decks have received
increasing attentions. Chen and Kareem (2004) examined the efficacy of
the tuned mass damper (TMD) in controlling the self-excited vibration,
and the results showed that the structural damping has negligible effect
on the divergent flutter, while it is relatively effective for increasing the
critical wind speed of LCF. Zhang (2007) presented a single-degree-of-
freedom (SDOF) nonlinear aerodynamic model, by which the phenom-
enon of LCF was explained. However, only the torsional mode was
considered. Xu and Chen (2009) investigated the LCF characteristics of a
Π-type blunt deck section via wind tunnel tests, and found that the flutter
forms (divergent flutter/LCF) were related with the section sharps, the
relative ratios of mode frequencies, masses and moment of inertia. Zhu
and Gao (2015) carried out a series of wind tunnel tests on several typical
bridge deck section models, and the characteristics of the vertical-
torsional coupled LCF were investigated.
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As a consequence of the rapid advancement of computation power
and improvement of computational fluid dynamics (CFD) technology, the
numerical simulation approach provides an effective way to study the
aeroelastic behaviors of flexible bridges. Fujiwara et al. (1993) calculated
the flow field around elastically-supported edge beam cross-sections by
using the finite-difference method (FDM); the vortex-induced vibration
(VIV) phenomenonwere successfully simulated and the onset wind speed
predictions agreed well with the experimental results. Robertson et al.
(2003) modified a two-dimensional (2D) spectral fluid solver in order to
incorporate a body undergoing vertical and torsional motion, by which
the fluid-structure interactions of a bridge deck were investigated. The
effectiveness of the numerical approachwas validated by comparing with
the experimental results. Frandsen (2004) numerically investigated the
wind-induced motion of 2D bridge decks by using finite element method
(FEM), in which the bridge deck was idealized as lumped mass, spring
and dashpot system. They concluded that the flutter instabilities for sharp
edge bridge decks were insensitive to the turbulence and the modeling of
a 3D flow structure. Although the VIV and divergent flutter of bridge
decks have been well investigated by using numerical approaches, their
applications to the LCF of bridge decks have not been documented.

The nonlinear LCF phenomena cannot be reasonably explained by the
traditional linear analytical framework that used for the divergent flutter.
In order to deepen the study of LCF phenomena of bridge decks, some
research works may be required. For a specific design scheme, we need
estimate the occurrence probability of a LCF by using experimental tests
and/or numerical simulations. If a LCF occurs, it is also significant to
study the characteristics of the varying amplitude with the wind velocity,
and to determine how the oscillation is affected by modal parameters and
wind field conditions. Therefore, the extensive investigations on the LCF
of models are necessary to be conducted in advance to predict or estimate
the aeroelastic response of real bridges, and further to address the flutter
instability behavior of long-span bridges.

In the present study, the LCF characteristics of a bridge deck are
comprehensively investigated by a fluid-structure interaction (FSI) nu-
merical model. The simulation accuracy of the FSI model is verified by
using a thin plate section by comparing the simulated results with the
theoretical solutions. At various initial attack angles with different wind
speeds, the dynamic responses of 2D deck model are numerically calcu-
lated. The vibration amplitude, frequency, and phase angle difference
between torsional and vertical motions are analyzed, and compared with
the experimental results. Under different initial excitation conditions and
structural damping ratios, the LCF responses are also calculated and
analyzed. Some significant conclusions are drawn and summarized.

2. Descriptions of the numerical model

2.1. Governing equations for fluid

The incompressible, unsteady, 2D air flow with moving boundaries
can be modeled by means of the Reynolds Averaged Navier-Stokes
(RANS) equations. For the numerical aeroelastic simulation that

contains dynamic meshes, the accurate simulation for the interactions
between air flow and moving deck section is an important requirement.
In the present study, the governing equations are given in Arbitrary
Lagrange-Euler (ALE) formulations, which accommodate the moving
boundaries and any subsequent deformation of the underlying discrete
meshes. By introducing the grid velocity umj of the moving mesh, the ALE
formulations for the mass and momentum of incompressible fluid can be
expressed as

∂ρ
∂t

þ ∂ρ
�
uj � umj

�
∂xj

¼ 0 (1a)

∂ρui
∂t

þ ∂ρ
�
uj � umj

�
ui

∂xj
¼ �∂p

∂xi
þ ∂
∂xj

�
μeff

∂ui
∂xj

�
þ Si (1b)

where ui or uj, ρ, xj and p are the fluid velocity components, the fluid
density, the Cartesian spatial coordinates and the fluid pressure,
respectively; Si denotes the additional momentum source contributions,
if any; μeff is the effective viscosity which includes laminar and turbulent
contributions (Hassan et al., 2010). In the RANS approach, the turbu-
lence viscosity is modeled by the SST k� ω model (Menter, 1994). Ying
et al. (2012) conducted comprehensive simulations of the unsteady flow
around rectangular cylinders by using six typical RANS turbulence
models, i.e. standard k� εmodel, RNG k� ε model, realizable k� ε
model, standard k� w model, SST k� w model, and RSM model.
Consequently, the SST k� ω model was found to be the best choice
among various RANS models, and it is accurate enough to be suitable for
many practical problems. Further details on the implementation of the
SST k� ω model can be referred to Menter (1994).

The ANSYS FLUENT adopted in this study uses the finite-volume
method (FVM) to solve the fluid governing equations. The ALE formu-
lations of governing equations enable the conservative fluid calculations
with mesh adaptation in time. The discretization method for the RANS
governing equations remains unchanged from the general application of
FVM (Schneider and Raw, 1987). The second-order implicit scheme and
upwind scheme are used for the time and spatial discretization, respec-
tively. The SIMPLE (semi-implicit pressure linked equations) algorithm is
used for solving the discretized governing equations.

2.2. Computational domain and mesh arrangement

The computational domain and boundary conditions are schemati-
cally shown in Fig. 1 for a 2D x-y slice. Due to large vibration amplitudes,
the wide rectangular computational domain is set as 15B � 5B m. The
boundaries are sufficiently far away from the sections so as to eliminate
the flow obstacle effect on the inflow and outflow boundary conditions.
At the inflow boundary, the flow with a low turbulence intensity of 0.5%
is used. The non-slip condition is used for the section surfaces, and the
symmetry condition is used for the top and bottom surface of the domain.
It can be approximately considered that the flow is fully developed at the
outlet boundary. Considering the mesh number should be as low as

Fig. 1. Computational domain and boundary conditions.
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