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A B S T R A C T

The simulation of non-stationary wind velocity field based on the spectral representation method often requires
significant computational efforts due to the summation of trigonometric functions usually involved in the
simulation procedure. Some techniques which make use of FFT algorithm have been developed but most of these
techniques deal with seismic ground motions. Limited effort has been devoted to the simulation of non-stationary
wind velocity. Therefore, in this paper, a spectral-representation-based technique which takes advantage of FFT
algorithm is proposed by combining Cholesky decomposition and Taylor series expansion. The approach consists
of locating and expanding the time and frequency non separable part of the decomposed evolutionary power
spectral density function by mean of Taylor series expansion to allow the application of the FFT algorithm.
Samples of non-stationary wind velocity can be then generated through multiple executions of the FFT algorithm
once the Taylor series expansion is successful. The present approach, which is primarily developed for the
simulation of non-stationary wind velocity on long-span cable supported bridges, is very efficient since the
summation of the trigonometric functions can be carried out through FFT algorithm which is well known for its
higher efficiency. The approach was further improved by reformulating the simulation formulas where the order
in which the summation operations are executed is imposed.

1. Introduction

Modern long-span cable supported bridges may experience consid-
erable wind-induced vibration due to their structural flexibility. The
aerodynamic study of these kind of bridges requires suitable fluctuating
wind velocity time-history which can be numerically generated byMonte
Carlo simulation (Spanos and Zeldin, 1998; Kareem, 2008) which in turn
may be achieved by frequency domain approaches such as linear filtering
approaches (Li and Kareem, 1990; Deodatis and Shinozuka, 1988; Spanos
and Mignolet, 1989) or by spectral representation (SR) method (Chen
and Letchford, 2004; Shinozuka and Jan, 1972; Grigoriu, 1993).The
spectral representation (SR) method is preferred for its higher accuracy.
However, for the simulation of fluctuating wind velocity time-history on
long-span cable supported bridges where thousands of long duration
wind processes are required, the spectral representation method may
become computationally expensive in terms of time and memory con-
sumption. The SR method can be divided into two main phases. The first

phase (phase I) consists of the decomposition of the power spectral
density (PSD) matrix while the second phase (phase II) consists of the
summation of trigonometric functions. Both phases have higher demand
in terms of computational resources. The improvement of any of the two
phases has significant impact on the overall simulation algorithm. In the
last decades, several techniques have been developed to improve the
efficiency of the SR method for the simulation of fluctuating wing ve-
locity field on long-span bridges.

For long span cable-stayed bridge, Li et al. (2004) introduced a
simplification approach to improve the computational complexity of the
phase I (decomposition of the PSD matrix) by treating a
three-dimensional wind velocity field as a group of one dimensional wind
velocity fields. A highly efficient technique was introduced by Yang et al.
(1997) and was later improved by Cao et al. (2000) for the simulation of
wind velocity field on long-span bridge decks. They established a
closed-form expression for the Cholesky decomposition of the PSDmatrix
based on the assumption that the simulation points are uniformly
distributed at the same height along the bridge deck axis. Recently,
similar approach has been proposed by Togbenou et al. (2016) for the
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simulation of wind velocity field on bridge towers to improve the effi-
ciency of the phase I. Several approximation methods such as the proper
orthogonal decomposition (POD) approach (Holmes et al., 1997; Rathi-
nam and Petzold, 2003; Di Paola and Gullo, 2001; Solari and Carassale,
2000; Chen and Kareem, 2005) and interpolation methods (Ding et al.,
2006; Gao et al., 2012; and Carassale and Solari, 2006) have been
developed for the phase I (decomposition of the PSD matrix). It can be
noticed that most of the techniques that were developed concern the
improvement of the phase I. Few research has been conducted on the
phase II (summation of trigonometric functions).

The generation of fluctuating wind velocity samples by direct sum-
mation of trigonometric series requires significant computation effort.
Yang (1972) showed that the summation of the trigonometric series can
be efficiently carried out by applying the Fast Fourier Transform (FFT)
algorithm, which significantly reduces the computation effort (Chen
et al., 2014; Deodatis, 1996b). Unfortunately, the FFT algorithm was
limited to the simulation of stationary processes. The spectrum associ-
ated with non-stationary processes is time-dependent and therefore does
not allow the direct application of the FFT algorithm. The application of
the FFT algorithm was later extended to the simulation of non-stationary
processes by Li and Kareem (1991) who suggested the decomposition of
the evolutionary power spectra in terms of trigonometric or polynomial
expansion based on stochastic decomposition which allowed the appli-
cation of the FFT algorithm for non-stationary processes. Later, a
spectral-representation-based approach was proposed in (Deodatis,
1996a) for the simulation of non-stationary, multivariate random process
with prescribed evolutionary power. Although the approach did not
address the issues related to the inapplicability of the FFT algorithm,
however, more information on how to apply the spectral representation
method for the simulation of non-stationary process were provided.
Without the help of the FFT algorithm, the simulation of non-stationary
stochastic process becomes very difficult especially when a large number
of non-stationary processes has to be simulated. Recently, Huang (2015)
proposed a simulationmethod in which the FFT algorithm can be used by
combining Cholesky decomposition and the POD approach. With this
technique which is a spectral-representation-based technique, the
evolutionary power spectral density (EPSD) matrix is first decomposed
based on Cholesky decomposition. Then, the resulted decomposed
spectrum is expanded into a set of separate functions of time and fre-
quency based on the POD approach. In terms of computation speed, the
approach appears to be better than the one proposed in Li and Kareem
(1991) due to the reduced number of items required for the POD. The
FFT-based approach of Li and Kareem (1991) and that of Huang (2015)
were primarily developed for the simulation of non-stationary seismic
ground motions and their application to the simulation of non-stationary
wind fields may not be straightforward due to the difference in spectrum
shape. Therefore, this paper aims at proposing a simple and easy to apply
technique, which provides a clear and comprehensive procedure for the
application of the main idea of spectrum separation used in the
FFT-based approaches of Li and Kareem (1991) and Huang (2015) for the
simulation of non-stationary fluctuating wind velocity field for long-span
cable supported bridges. The wind spectra that are involved in the study
of the interaction between bridges and wind belong to a special class of
spectra from which evolutionary spectra can be constructed and sepa-
rated easily without the need of the stochastic decomposition and the
POD approaches.

In this paper, a modified FFT-based spectral representation method is
proposed for the simulation of non-stationary wind velocity fluctuation
for long-span cable supported bridges by combining Cholesky decom-
position and Taylor series expansion. The approach consists of a spectral
representation method where the frequency and time non-separable part
of the decomposed evolutionary power spectral density (EPSD) function
is extracted and expanded through Taylor series expansion. Once the
expansion is successful, the decomposed EPSD can be regarded as the
weighted summation of frequency-dependent functions with time-
dependent weights. In order words, the non-separable time and

frequency PSD is converted into a set of separate functions of frequency
and time. Based on the expanded decomposed evolutionary spectra, the
summation operations involved in the phase II of the spectral represen-
tation method can be efficiently carried out through multiple executions
of the FFT algorithm. Themethod was further improved bymodifying the
order in which the summation operations are conducted and improved
simulation formulas are provided. The paper consists of four sections.
The first section provides a review on the related existing works and
introduces the current new contribution while the last section summa-
rizes the entire study. The second section explains the proposed simu-
lation procedure. A numerical example involving the simulation of non-
stationary fluctuating wind velocity field along the deck of a cable sup-
ported bridge is performed in the section three to demonstrate the ac-
curacy and the efficiency of the proposed simulation procedure.

2. Non-stationary wind velocity field simulation methods

2.1. Simulation of wind velocity by spectral representation method

Let's assume that Sðω; tÞ is the time and frequency non-separable
evolutionary power spectral density matrix of a stochastic zero-mean
non-stationary wind velocity field xðtÞ. Sðω; tÞ can be expressed
as follows:

Sðω; tÞ ¼

2
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Sjkðω; tÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sjjðω; tÞSkkðω; tÞ

q
γjkðωÞ (2)

where ω is the circular frequency; Sjjðω; tÞ and Skkðω; tÞðj; k ¼ 1; 2;⋯nÞ
are the auto spectral density functions of the components xjðtÞ and xkðtÞ,
respectively; γjkðω Þ is the coherence function. The EPSD matrixSðω; tÞ
can be decomposed in the following form (Gao et al., 2012; Li
et al., 2004):

Sðω; tÞ ¼ Dðω; tÞΓðωÞDT*ðω; tÞ (3)

where

Dðω; tÞ ¼ diag
h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

S11ðω; tÞ
p

;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S22ðω; tÞ

p
;⋯;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Snnðω; tÞ

p i
(4)

T denotes transpose and * denotes the complex conjugate. Γðω Þ is the
lagged coherence matrix:

ΓðωÞ ¼

2
664

1 γ12ðωÞ ⋯ γ1nðωÞ
γ21ðωÞ 1 ⋯ γ2nðωÞ

⋮ ⋮ ⋱ ⋮
γn1ðωÞ γn2ðωÞ ⋯ 1

3
775 (5)

Both Sðω; tÞ and Γðω Þ are hermitian matrices with positive definite
properties and therefore can be decomposed in the following form:

Sðω; tÞ ¼ Dðω; tÞLðωÞLT*ðωÞDT*ðω; tÞ ¼ Hðω; tÞHT*ðω; tÞ (6)

where Hðω; tÞ andLðω Þ are lower triangular matrices which can be
computed based on the Cholesky decomposition. The computation of
Hðω; tÞ through the Cholesky decomposition will require higher compu-
tation time due the fact that the decomposition has to be executed for
each frequency increment and time instant. Therefore, the decomposed
lagged coherence matrix Lðω Þ is computed instead. By referring to Eq.
(6), the elements of the matrix Hðω ; tÞ can be estimated as follows:

Hjkðω; tÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sjjðω; tÞ

q
βjkðωÞ (7)
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