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A B S T R A C T

The Volterra theory-based reduced-order modeling (ROM) technique is utilized for simulating fluid-structure
interactions of bridge decks during vortex-induced vibration (VIV). To improve the order of nonlinearity
adopted in the Volterra series, sparse form kernels are adopted in this study. To illustrate and validate the
performance of ROM in simulating fluid-structure interactions of VIV, a real bridge deck is used as a case study.
The kernels in the Volterra series are identified using least squares with input–output pairs obtained from a
CFD approach. Results indicate that ROM can well reproduce the inherent nature of nonlinearities existing in
fluid-structure interactions described by the CFD approach. A method for calculating the VIV of bridges by
combining ROM with the structural finite element model is also proposed. The VIV performance of a real bridge
is obtained through the proposed method and is compared with field measurements.

1. Introduction

Large-span bridges are quite sensitive to wind effects. Since the
collapse of the Tacoma Narrows Bridge, there has been great develop-
ment in the subject of bridge wind resistance. However, there are still
some aspects that need to be further improved, among which is the
prediction of vortex-induced vibration (VIV) for a real bridge at the
concept design stage.

The most direct way to achieve this object is to conduct wind tunnel
experiments on an aeroelastic model that has the same dynamics and
configurations as a real bridge, or to use the CFD approach with three-
dimensional (3D) grids and arbitrarily shaped moving boundaries. The
involving of a real 3D bridge in the CFD approach will be difficult to
implement in the foreseeable future. In addition, experimental results
of an aeroelastic model can seldom be comparable with those of field
measurements or sectional models, since the scale ratio of an aero-
elastic model is usually much smaller than that of a sectional model.
Thus, wind tunnel experiments or CFD calculations of VIV are
normally conducted on a sectional model with structural parameters
determined according to the equivalent modal mass of the deck for a
certain mode.

However, the VIV response of a structure is sensitive to a structural
parameter: the mass-damping parameter. For large-span bridges, there
are numerous VIV modes in the velocity range of interest. The modal
mass and modal damping vary for each mode, which would require a

mountain of experimental work or CFD calculations on sectional
models in order to obtain the full VIV performance of a bridge.
Furthermore, a real bridge is a flexible structure with 3D modal shapes
whose VIV response varies with that of the sectional model. Moreover,
oncoming flows are not always uniformly distributed along the span-
wise axis of the bridge. In addition, 3D modal shapes may cause
vortices to move along the span-wise axis. All these 3D effects of flow
fields may cause a loss of coherence of VIV forces along the span-wise
direction, and result in inconsistency between the VIV responses of the
sectional model and the real bridge.

A promising way to overcome these problems is to utilize mathe-
matical models to model the flow-structure interactions existing in VIV
and to combine these models with the structural finite element model
to calculate the VIV responses of a bridge under different modal
conditions.

Since the work of Bishop and Hassan (1964), a lot of these kinds of
models have been proposed, which can be roughly divided into two
main categories: single-degree-of-freedom models and two-degree-of-
freedom models. Single-degree-of-freedom models can be further
classified into negative-damping models (D’Asdia et al., 2003; Ehsan
and Scanlan, 1990; Goswami et al., 1993; Larsen, 1995; Marra et al.,
2011; Scanlan, 1998) and force-decomposition models (Griffin, 1980;
Iwan and Botelho, 1985; Sarpkaya, 1978). Two-degree-of-freedom
models can also be further divided into two main subclasses: wake-
oscillator models (Facchinetti et al., 2004; Farshidianfar and
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Zanganeh, 2010; Skop and Balasubramanian, 1997) and Milan-oscil-
lator models (Diana et al., 2006; Falco et al., 1999).

The goal of a mathematical model for VIV should be prediction for a
certain deck shape for values of mass-damping parameters different
from that for which the model parameters were estimated.
Unfortunately, none of the above empirical models seem to be able
to accomplish this task, since they always have arbitrarily assumed
forms that hardly touch the intrinsic nature of fluid-structure interac-
tions.

Recently, some conceptually novel and computationally efficient
techniques have been proposed for computing unsteady flows and
fluid-induced effects, e.g. reduced order modeling (ROM) techniques.
Among the various ROMs, the Volterra theory-based model provides
the possibility to catch the inherent nature of nonlinearities and
memory effects existing in fluid-structure interactions. The basic
premise of this model is that a large class of nonlinear systems can
be modeled as a sum of multidimensional convolution integrals of
increasing order (Volterra et al., 1959).

The Volterra theory was first proposed and successfully applied in
electrical engineering, and was then utilized to model non-Gaussian
fluid loadings and mechanical nonlinearities as well as fluid-structure
interactions in the fields of offshore engineering (Rugh, 1981;
Schetzen, 2006). After that, Silva (1997) applied it in modeling the
aeroelastic phenomenon in aerospace engineering. Recently Wu and
Kareem introduced it into bridge wind engineering to model aero-
dynamics and aeroelasticity (Wu and Kareem, 2013a, 2015). Wu and
Kareem (2013b) studied the prospect of Volterra series in modeling the
VIV system of a bridge. However, the VIV system in their study is
represented by the traditional nonlinear semi-empirical model, which
is still a far cry from practical application.

In this paper, the Volterra theory-based reduced-order model is
applied in practice by involving a real bridge. A procedure for
calculating the VIV response of a bridge by combining ROM with the
structural finite element model is also proposed. This paper is
organized as follows: Section 2 briefly introduces the reduced order
modeling of VIV and its kernel identification method; Section 3 applies
ROM to a real bridge deck to model the fluid-structure interactions
existing in VIV; Section 4 proposes a procedure for calculating the VIV
of bridges by combining ROM with the structural finite element
method, and the VIV performance of a real bridge is obtained by using
this procedure; and Section 5 gives some concluding remarks.

2. Reduced-order modeling and kernel identification

2.1. Reduced-order modeling of bridge deck VIV

For bridge decks submerged in flow fields, as discussed by Wu and
Kareem (2013a), motion-induced effects under a stationary uniform
wind flow (constant wind velocity) can be uniformly expressed by
taking the vertical motion velocity y ̇ and the rotary motion θ and
velocity θ ̇ as the input information of bridge aerodynamics:

F t f θ y θ t( ) = ( , ,̇ ,̇ ) (1)

where, f denotes a generalized function. The VIV of a bridge deck often
occurs in a single degree of freedom. Taking the vertical degree of
freedom as an illustration, the lift force on a strip of deck can be
expressed as:

F t ρU DC y t( ) = 1
2

( ̇, )L
2

(2)

where, C y t( ̇, )L denotes normalized lift forces; D is deck height; U is the
oncoming wind velocity; and y is the structural vertical displacement
from the static deformation position.

The VIV system can typically be treated as time-invariant, causal
and with fading memory. For such a system, the lift force can be
uniformly represented as:
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where, h τ( )1 is the first-order kernel, which describes the linear
behavior of the system; h τ τ( ,…, )p p1 is the pth-order kernel term, which
describes the pth-order nonlinearity existing in the system; and M is
the degree of nonlinearity to be considered in the VIV system.

In real practice, the time series of both y ṫ( ) and C t( )L generated
either from experiments or CFD calculations are discrete time series.
Thus, Eq. (3) is always written in discrete-time form, which can be
expressed as:
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Eq. (4) can be rewritten in matrix form:

= ′N N Q Q×1 × ×1   (5)

where N n= + 1 denotes the length of the input-output pairs; Q
denotes the length of the kernel vector Q×1 in the discrete-time
model; N×1 is a vector of the output data; and ′N Q× is a matrix which
consists of the input data combinations.
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Since the summation notation for the Volterra operators in Eq. (6)
can be quite complicated, for illustration purposes, an explicit expres-
sion for a particular Volterra series expansion is provided in the
Appendix A.

2.2. Kernel identification

The application of the Volterra series in engineering fields can be
roughly classified into two main categories. The first is to represent a
dynamic phenomenon that has complicated analytical expressions, so
the kernels can be generated by using the harmonic probing method.
The other is to build a model for an observed dynamic phenomenon
that does not have any analytical expression, so the kernels are
estimated from experimentally or numerically generated data.

The reduced order modeling of VIV using the Volterra series
belongs to the latter case, so experimentally or numerically generated
data is needed. Traditionally in aerodynamic and aeroelastic applica-
tions, kernel identification has been performed using impulsive inputs.
However, the identification of Volterra kernels through impulse-input
approach is a resource-intensive endeavor. For kernels that are larger
than 3, the analytical details for input-output relations become
increasingly fussy, and the interpolation idea involving impulses of
various weights becomes increasingly barren from a feasibility view-
point. Thus, the identification of kernels through impulse-input
approach is always limited to the second-order. In fact, recent studies
indicate that the impulse identification method is far from optimal in
terms of accuracy and efficiency comparing with the least-square
approach, especially when higher-order kernels are involved in this
process (Balajewicz and Dowell, 2012; Balajewicz et al., 2012).

It is well known that the even-order terms capture the even-order
super-harmonics and thus take into account the asymmetric nonlinea-
rities, whereas the odd-order terms capture the odd-order super-
harmonics and thus take into account the symmetric nonlinearities.

K. Xu et al. Journal of Wind Engineering & Industrial Aerodynamics 167 (2017) 228–241

229



Download English Version:

https://daneshyari.com/en/article/4924878

Download Persian Version:

https://daneshyari.com/article/4924878

Daneshyari.com

https://daneshyari.com/en/article/4924878
https://daneshyari.com/article/4924878
https://daneshyari.com

