
Wind modelling with nested Markov chains

F. Tagliaferri a,n, B.P. Hayes b, I.M. Viola c, S.Z. Djokić c

a School of Marine Science and Technology, Newcastle University, United Kingdom
b IMDEA Energy Institute, Madrid, Spain
c Institute for Energy Systems, School of Engineering, The University of Edinburgh, United Kingdom

a r t i c l e i n f o

Article history:
Received 18 November 2015
Received in revised form
30 July 2016
Accepted 20 August 2016

Keywords:
Wind speed
Markov chains
Nested Markov chains
Wind modelling
Time series

a b s t r a c t

Markov chains (MCs) are statistical models used in many applications to model wind speed. Their main
feature is the ability to represent both the statistical and temporal characteristics of the modelled wind
speed data. However, MCs are not able to capture wind characteristics at high frequencies, and, by de-
finition, in an MC the dependence on events far in the past is lost. This is reflected by a poor match of
autocorrelation function of recorded data and artificially generated time series. This study presents a new
method for generating artificial wind speed time series. This method is based on nested Markov chains
(NMCs), which are an extension of MC models, where each state in the state space can be seen as a self-
contained MC. The approach is designed to be flexible, so that the number and distribution of NMC states
can be adjusted according to user requirements for model accuracy and computational efficiency. The
model is tested on two datasets recorded in two UK locations, one onshore and one offshore. Results
indicate that NMCs are able to capture the temporal self-dependence of wind speed data better than
MCs, as shown by the better match of the autocorrelation functions of recorded and artificially generated
time series.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The efficient analysis and exploitation of wind energy resources
requires models for wind speed at different time scales. The aim of
these models is not to forecast the actual wind speed at a certain
time, but to generate artificial wind time series that can realisti-
cally represent a possible chain of events, i.e. series of wind speeds
with a pre-set resolution. Depending on the application, there are
some aspects of this “realism” that might be more important than
others. This is the case, for instance, of extreme events modelling
(Lennard, 2014), or investigation of daily patterns in wind energy
production (Scholz et al., 2014), or estimation of total annual en-
ergy outputs of wind farms (Hayes and Djokic, 2013b; Hayes et al.,
2011, 2012).

Different methods for wind speed modelling have been pro-
posed such as autoregressive moving average (ARMA) models
(Kennedy and Rogers, 2003) and Markov chain (MC) models (Jones
and Lorenz, 1986). More sophisticated and accurate methods,
which may for instance use the knowledge of other quantities
such as pressure and temperature, have been developed (e.g. Bit-
ner-Gregersen et al., 2014), but those methods are more

computationally demanding and not suitable for applications
where a limited amount of data is available. Despite their simpli-
city, MCs are able to model the wind time dependence char-
acteristics because they are based on the idea that the probability
distribution for the wind at the next time step depends on the
current wind state. Other models, such as ARMA, are not able to
capture this probability dependence. Therefore, although the need
for forecasting has driven academic research to develop better
models, the simplicity of MCs makes them a valuable tool as
shown by their use in many recent studies. For example, when
wind influences a series of decisions that have to be based on
current observation, MCs are particularly suited for their property
of memory loss (Al-Sabban et al., 2013). Similarly, MCs have been
used to model wind turbines when focusing on component failure,
that has properties that are independent from the past history
(Sunder Selwyn and Kesavan, 2013), or in sailing strategy, where
decisions taken at one time step need to be based on the expected
wind behaviour at the following time step(s) (Tagliaferri et al.,
2014).

However, MCs are not able to capture wind characteristics at
high frequencies, but also, by definition, in an MC the dependence
on events far in the past is lost. This is reflected in a general good
agreement of statistical quantities such as mean and variance, but
in a poor modelling of autocorrelation function and power spectral
density. A recent study by Brokish and Kirtley (2009) underlines
the appeal of MCs for wind modelling in terms of correct
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representation of cumulative distribution function (CDF), but also
shows the unsuitability of the model for time steps smaller than
15 min using a convincing example of storage underestimation.

In order to improve the accuracy and the autocorrelation of
standard MCs, semi-Markov models have been used, where the
time step is not fixed, but it is a random variable that can have any
distribution, and the time spent in one state affects the transition
probability distribution (D'Amico et al., 2014). In D'Amico et al.
(2013), it is shown how semi-Markov processes with memory
exhibits a better autocorrelation agreement than conventional
MCs. This is due to the ability of this model to keep memory of
past transitions through an auxiliary random process representing
the moving average of the wind speed.

Some authors (e.g. Shamshad et al., 2005) have also applied
second or third order MCs, where time steps are again fixed, and
the probability distribution for the next state is dependent not just
on the current state, but also on the previous states. Unfortunately,
higher order MCs are more computationally demanding, as for
instance a third order 32-state MC requires 32,768 state transition
probabilities. Therefore, the key advantage of using MCs instead of
a more sophisticated method is lost.

In order to improve the MC accuracy and to better model the
time correlation at small time steps without an excessive increase
of the computational time, we propose the use of nested Markov
chains (NMCs) for wind modelling, which is previously considered
in the context of “smart grid” analysis in Hayes and Djokic (2013a).
With a similar approach to the one presented in D'Amico et al.
(2013), we define a model based on MC but with the additional
property of keeping a form of memory of past transitions.

The paper is organised as follows: in the Method, we present
the principles of MCs and NMCs, how these models are used to
forecast the wind speed, and the criteria used to evaluate the re-
sults. In the Results, we compare different artificial time series
generated with MCs and NMCs with original recorded data. Con-
cluding remarks are summarised in the Conclusions.

2. Method

2.1. Markov chains

In this section we define MCs and their basic properties. A
complete description of MC is out of the scope of this paper and
can be found for instance in Norris (1998).

Let …X X X, , ,0 1 2 be the stochastic process representing the
wind speed. The subscript represents a discrete time step (seconds
in this work) and the random variables Xi can assume values on a
discrete set = { … } s s, , N1 , which is called state space. In the
present study, the states …s s, ,1 2 are intervals of possible wind
speeds, and each interval is identified by its central point. The
states are classified in Table 1. With this notation, the wind speed
is represented as a time series, or a stochastic process, where, for
instance, the events “ =X s0 3” and “ =X s4 8” mean that the wind
speed at time 0 (or initial time) is in the interval s3 and that the
wind speed a time =t 4 s is in the interval s8 respectively. For
simplicity, when generating an output time series, we consider
just the central point of the interval defining the state. This means
that the event “the wind speed value is in the range [ ]a b, ” becomes

the event “the wind speed is ( + )b a /2”. The choice of having wider
intervals grouped in the same state for higher wind speeds is
justified by the infrequent occurrence of those wind speeds. This
results in a trade-off between the number of states and how ac-
curately the higher, more infrequent wind speeds are modelled.
However, the occurrences of infrequent wind speeds, and there-
fore the choice of interval widths, depends on the available dataset
(specifically on its length). The Markov property for the process
{ } ≥Xk k 0 asserts that the probability distribution at time n is de-
pendent on the state at time −n 1, but independent from what
happened before. This property is also referred to as memory loss,
and is formulated by the following equation:
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| = } = ( )
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where ∈ s s s, ,i j ik
. Fig. 1 shows a common way of representing

MC. The process “jumps” from one state to the next according to
the probabilities associated to the arrows. It is clear from the re-
presentation that the transition probabilities depend on the cur-
rent state, but not on the previous ones. The transition prob-
abilities are naturally represented in a transition matrix = { }P pij ,
where the elements of the matrix, pij, are the probabilities defined
in Eq. (1). The ith row of the matrix P represents the discrete
probability distribution for the next state when the current state is
i. The probability distribution for the initial state X0, or initial
distribution is conventionally represented as a column vector P0,
where the element p0i is defined in Eq. (2), or the initial state could
be arbitrarily selected to start the process (for instance, as the
mode or median value from the dataset):

= { = } ( )p X s 2i i
0

0

State space, transition matrix and initial distributions uniquely
define an MC process.

2.2. Nested Markov chains

In the NMC approach, the wind series is built using an auxiliary
MC. Let T and t be two different time steps, where T is a multiple of
t. For instance, throughout this paper t¼1 s. Let = …S s s, N1 be a
finite state space. We define …Y Y, ,0 1 the MC on the space state S,
representing the average wind speed over a period of length T
with transition matrix P. In the following, this process will be re-
ferred to as the outer MC. We generate a sequences of wind speed
time series of duration T with time step t using the transition
matrix PYi, where the element Pkij represents the probability that
the wind at instant n is in state sj given the event that at time −n 1
it was in state si when the average over the period T is sk. Those
models will be referred to as inner MC. The output process is the
sequence of realisations of the inner MC, i.e. one series if inner
states with step t for each state of the outer MC. Fig. 2 shows a
graphical representation of the relationship between inner and
outer MC.

The output process now does not strictly follow the Markov
property, because the probability distribution for time n does not
depend only on the state at time −n 1, but also on what happened
in the previous hour. However, if we consider the process within
one hour, this is an MC. Also the outer process is an MC. In fact, an

Table 1
State spaces.

State s1 s2 … s26 s27 s28 s29 s30 s31 s32

Interval (m/s) 0–1 1–2 … 25–26 26–28 28–31 31–34 34–39 39–43 43–54
Output (m/s) 0.5 1.5 … 25.5 27 29.5 32.5 36.5 41 48.5
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