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A B S T R A C T

Extreme value analysis (EVA) is a statistical tool to estimate the likelihood of the occurrence of extreme values
based on a few basic assumptions and observed/measured data. While output of this type of analysis cannot
ever rival a full inspection, it can be a useful tool for partial coverage inspection (PCI), where access, cost or
other limitations result in an incomplete dataset. In PCI, EVA can be used to estimate the largest defect that can
be expected. Commonly the return level method is used to do this. However, the uncertainties associated with
the return level are less commonly reported on. This paper presents an overview of how the return level and its
95% confidence intervals can be determined and how they vary based on different analysis parameters, such as
the block size and extrapolation ratio. The analysis is then tested on simulated wall thickness data that has
Gaussian and Exponential distributions. A curve that presents the confidence interval width as a percentage of
the actual return level and as a function of the extrapolation ratio is presented. This is valid for the particular
scale parameter (σ) that was associated with the simulated data. And for this data it was concluded that, in
general, extrapolations to an area the size of 500–1000 times the inspected area result in acceptable return level
uncertainties (<20% at 95% confidence). When extrapolating to areas that are larger than 1000 times the
inspected area the width of the confidence intervals can become larger than 30–50% of the actual return level.
This was deemed unacceptable: for the example of wall thickness mapping that is used throughout this paper,
these uncertainties can represent critical defects of nearly through wall extent. The curve that links the
confidence interval width to the return value as a function of extrapolation ratio is valid only for a particular
scale parameter value of the EVA model. However, it is imagineable that a few of such relations for different
scale parameters σ could be simulated. By picking the relation with the closest σ value (based on observation or
estimation) for the inspection dataset, the presented approach can then be used to quickly estimate the
uncertainty associated with an EVA extrapolation.

1. Introduction

Statistical modelling is an important tool in many areas of science
and engineering. It has been used in a wide range of applications from
quantifying the uncertainty of the output of a measurement tool [1] to
predicting the lifetime of engineering components [2,3]. In non-
destructive testing (NDT), specifically, statistical modelling has been
used to study the probability of missing critically sized defects in an
inspection [4], studying the reliability of inspections [5,6] and the
probability of component failure [7]. A statistical model describes the
behaviour of a random variable, providing a probability of a given value
of the random variable occurring. While the statistical tools described
in this paper are not limited to a particular problem, this paper
illustrates their use by application to a particular problem: assessment
of wall loss due to corrosion from ultrasonic inspection data. For this
particular application area coverage is very important. Often full

coverage of a plant/component cannot be achieved due to cost, access
or other limitations. Therefore partial coverage inspection (PCI) is
required. PCI is based on the construction of a statistical model from
inspection data collected across a sample area (as illustrated in Fig. 1).
The findings from the sample area are then used to form a picture of
the condition of a larger area or the whole component. In the particular
case that we focus on in this paper the random variable is the measured
thickness (or the wall loss) across the inspection area and the operator
is particularly interested in the largest defect (the thinnest wall
thickness that is to be expected/measured).

Fig. 1 shows that the key contribution of the statistical model is the
extrapolation of information from the known domain (inspected area)
to the full region of interest (area to which one extrapolates). There are
different ways of carrying out this extrapolation, it can be done based
on the cumulative distribution function (CDF) of measured thickness
values or based on a sample of minima within sub-populations of the
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available data population, extreme value analysis (EVA) is an example
of the latter. The key difference between the two approaches is that the
CDF is a model that focuses on describing the whole thickness
distribution, whereas EVA focuses more tightly onto the extremes (in
this case the largest defects/thinnest part of the wall).

The study of extreme values is a well-developed topic, finding
applications to topics as varied as finance [8,9], structural design [10–
12], environmental modelling [13,14] and even the assessment of the
risk of terrorist attacks [15]. Its use for analysis of corrosion data is
discussed in [3]. Kowaka provides a number of examples of the use of
extreme value analysis to extrapolate from C-scans of reduced areas of
a plant to larger areas of components. Further examples are provided
in [16–29]. EVA gained some traction in Japan in the 1970s. However,
it then fell out of favour. The authors believe that this might have been
due to the lack of available computational power which made proces-
sing large amounts of C-scan data infeasible.

In recent years, the use of an extreme value approach has regained
popularity. A report prepared for the Health and Safety Executive (in
the UK) assessed current available methods and the barriers to their
adoption. It concluded that there are readily available statistical
methods for the analysis of corrosion data. However, these methods
are not used due to poor dissemination to engineers and the lack of any
readily available computational tools [30]. There is also a lack of
knowledge about the uncertainties of EVA predictions and this paper
aims to address this.

This paper is structured as follows: first the theoretical framework
behind the cumulative distribution function and EVA are outlined and
the process of extrapolation from the known data is described.
Following this a method of determining the confidence intervals of
the return level is described. Then 3 different numerical studies are
presented: The first study demonstrates that EVA and the return level
are an effective way of estimating the minimum thickness when
extrapolating from an inspected area to a larger area over which an
assessment is made. Simulated inspection data is used to show to
compare the minimum thickness values in actual thickness distribu-
tions to those estimated by the return level method. The second study
investigates the variation of the confidence interval width as a function
of the block size (number of thickness minima) and the extrapolation
ratio that are used in the EVA. The third study highlights the trade off
between precision (confidence interval width) of an EVA prediction and
the accuracy of the prediction, specifically with regards to the number
of minima that are used to construct the EVA model. In order to do so
groups of actual minimum thicknesses from very large surfaces and
their EVA estimates are compared. Then results are summarised and
conclusions are drawn.

2. Background theory

2.1. The cumulative distribution function

Ultrasonic inspection data of corroded components usually comes
in the form of a C-scan thickness map (Fig. 2(a)). The thickness at each
position in the map is represented by a coloured pixel, providing a
qualitative overview of the degradation in the inspection area. The
thickness map can be converted into a more quantitative presentation
of the data by calculating an estimate of the cumulative probability
distribution of the thickness measurements. This is calculated by
sorting the thickness measurements in ascending order, assigning each
thickness measurement a rank and using this rank to calculate the
empirical cumulative distribution (ECDF) function:

F x i
N

( ) =
+ 1 (1)

where x is a measurement of thickness, i is its rank and N is the total
number of thickness measurements. F(x) is the probability of measur-
ing a thickness of less than x. An example of a cumulative distribution

Fig. 1. An example partial coverage inspection. A data analyst uses data that was
collected from the green area to construct a statistical model. The statistical model
(represented by a black box) is used to extrapolate to the condition of the larger red area.
Hypothetically this area could be as large as the entire component.

Fig. 2. (a) A thickness map of a Gaussian distributed Gaussian correlated rough surface
with RMS=0.1 mm and correlation length 2.4 mm. (b) The empirical cumulative
distribution function extracted from the thickness map above. The black crosses are
the estimated values of the cumulative distribution function while the red dashed line is a
Gaussian distribution that has been fitted to the data.
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