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A B S T R A C T

In engineering practice, failures due to fatigue cracks in metallic structures have always been difficult to predict.
In our study, nonlinear Lamb wave-mixing was applied in the detection of micro-cracks in plates. The analysis
of the nonlinear interaction of these waves with cracks of various lengths and widths was performed using finite-
element simulations. The simulation results showed that the sideband at the sum frequency provide a sensitive
means for micro-crack detection. Moreover, the sideband amplitudes show a monotonic increase with micro-
crack length, but a decrease with micro-crack width. Experiments using Lamb wave-mixing were conducted on
plates with fatigue cracks. The experimental results show that a proposed acoustic nonlinearity parameter
related to the sideband at the sum frequency is sensitive to micro-cracks in plate, and is well correlated with the
damage degree.

1. Introduction

Metallic plates are widely used in mechanical, civil, and aerospace
applications. Failure in these metallic structures under time-varying
loads is often attributed to cracks developed over time through fatigue.
Therefore the detection of micro-cracks at an early stage of fracture is
important to avoid catastrophic failures of engineering components
and structures. Lamb waves has been widely used in the field of
nondestructive testing of plates as they can transfer energy over long
distances and detect internal defects by interrogating the entire
thickness of the structure [1,2]. The traditional Lamb wave technique
is based on linear theory and normally relies on measuring some
particular parameters, such as acoustic velocity, attenuation, transmis-
sion and reflection coefficients, to determine the elastic properties of a
material or to detect defects. The presence of defects changes the phase
and/or amplitude of the output signal, but the frequency of the input
and output signals is the same. However, the conventional ultrasonic
technique (including Lamb wave) is sensitive to gross defects or opens
cracks, where there is an effective barrier to transmission, whereas it is
much less sensitive to evenly distributed micro-cracks or degradation
[3,4].

An alternative technique to overcome this limitation is the non-
linear ultrasonic technique. The principal difference between linear and
non-linear ultrasonic techniques is that for the latter the existence and
characteristics of defects are often related to an acoustic signal for
which the frequency differs from that of the input signal. According to
the principle of detection, nonlinear ultrasonic methods can be divided
into harmonic [5,6], resonance [7], vibro-acoustic modulation [8], and

mixing wave method [9]. The experimental research demonstrated that
the nonlinear ultrasonic techniques are robust to factors such as
complicated geometry or moderate environmental variations, such as
wind and temperature, therefore they have unique advantage in field
applications [10,11].

Attempts have been made recently to apply the nonlinear behavior
of Lamb waves for nondestructive evaluation (NDE) and material
characterization [12,13]. The research is mainly focused on the
generation of second harmonics in the Lamb wave response, which
has been theoretically and experimentally investigated for micro-
structural damages, such as plasticity, material degradation, and
fatigue damages in metal. For example, Deng [14] investigated
complicated problems of second-harmonic generation of Lamb waves
using a second-order perturbation approximation and a modal analysis
approach. Deng [15] and Pruell et al. [16] investigated the feasibility of
using nonlinear effects of Lamb waves for assessing accumulated
fatigue damage in solid plates. Pruell et al. [17] developed an
experimental procedure for characterizing fatigue damage in metallic
plates using nonlinear Lamb waves. Xu et al. [18] theoretically and
experimentally investigated the harmonic generation effect of non-
linear Lamb waves in aluminum plates using time-frequency analysis.
Li et al. [19] applied nonlinear Lamb waves for the detection of
material degradation caused during thermal cycles. The major difficulty
for the application of harmonic generation method is to isolate the
causes of nonlinearity. As there are inevitable nonlinear distortions in
the transmitting/receiving system, such as amplifiers, transducers, and
coupling media, it is difficult in practice for the harmonic generation
technique to determine if the measured nonlinearity is because of
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damage or the testing system.
An alternative method to overcome these limitations is the wave

mixing technique, which is based on the fact that material nonlinea-
rities cause an interaction between two intersecting ultrasonic waves
[20,21]. Under certain circumstances, this can lead to the generation of
a third wave for which frequency and wave-vector equal the sums of
those of the incident waves. The generated resonance wave is related to
the nonlinearity of materials/structures. Therefore, by measuring this
wave, the nonlinearity might be obtained. Compared to the generation
of second harmonics, the advantages of wave mixing technique
includes: it is less sensitive to nonlinearities in the measurement
system, and allows for great flexibility in selecting wave modes,
frequencies, and propagation directions [21]. Although there have
been many studies of the bulk waves mixing using for NDE and
material characterization, little research has been conducted on the
Lamb wave mixing for damage detection [20,21]. Lee et al. [22]
conducted an exploratory study on using the nonlinear Lamb wave-
mixing technique for damage detection in plates. This technique was
shown to have potential to measure the nonlinearity of the micro-
structures.

In this paper, we report our investigation both theoretical and
experimental of this technique in nondestructive testing of fatigue
cracks in plates. First, the fundamental theory of nonlinear Lamb wave
mixing was introduced. Second, an analysis of the nonlinear interaction
of Lamb waves with cracks of various lengths and widths was
performed using finite-element (FE) simulation. Finally, experiments
were conducted on Lamb wave mixing in fatigued plates for micro-
crack detection.

2. Propagation of a nonlinear Lamb wave

2.1. Propagation of linear Lamb waves

Lamb waves are defined as elastic waves of plane strain propagating
in a traction-free, homogeneous and isotropic plate. The propagation of
such waves is governed by the Navier equation

λ μ u μ u ρb ρu( + ) + + = ̈ ,j ji i jj i i0 0 , 0 , (1)

where λ0 and μ0 are the Lamé constants, ρ is the density, bi the force
per unit mass, u the displacement, and i j, are coordinate indices. By
applying the traction-free boundary condition, the dispersion equation
can be derived,
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where exponent ± 1 specifies the symmetric/antisymmetric mode, h is
the plate thickness, k the wave number, and p and q are defined as

p k k q k k= − , = − ,l t
2 2 2 2 (3)

where kl and kt are the wavenumber amplitudes for the longitudinal
and transversal waves, respectively. As indicated by (2), the propaga-
tion of Lamb waves has dispersive, multi-mode characteristics. Fig. 1
shows the phase and group velocity dispersion curves for a 1.7 mm-
thick steel plate.

The multi-mode and dispersive nature of Lamb waves complicate
interpreting the received signals. Therefore, single-mode waves are
desirable in NDE applications. In this paper, the fundamental sym-
metric mode (S0) was chosen as mode for nonlinear Lame wave mixing
measurement. The reasons include: S0 is almost non-dispersive, which
makes the interpretation of signals easier; Moreover, it is the fastest
mode, therefore it is the first wave-packet to arrive at the receiver; In
addition, the displacement of the S0 mode is almost uniform through
the thickness of the plate, thus its sensitivity to defects is independent
of their through-thickness location. The excitation frequencies in Lamb
wave mixing measurements were determined by considering of various

factors, such as the dispersion characteristic of S0 mode, frequency
responses of transmitter and receiver, and resonance characteristic of
test samples. According to the dispersion characteristic of S0 mode,
wave mixing experiments should be conducted in lower frequency
range due to the lower dispersion. The detailed process of excitation
frequencies determination were discussed in Section 4.1. In this paper,
we report on the simulated and experimental studies of nonlinear
Lamb wave mixing using S0 mode at low frequencies of 450 kHz and
600 kHz.

2.2. Nonlinear response of Lamb wave mixing

Physically, the phenomenon of wave mixing response is related to
nonlinearity in the elastic behavior of the material, which indicates that
the relationship between stress σ and strain ε is nonlinear. This
nonlinear relationship can be described by the nonlinear Hooke law:

σ Eε βε= (1 + + ⋯), (4)

where E is Young's modulus and β the second-order nonlinear elastic
coefficient.

Assuming that the nonlinearity in the plate is small, the solution to
(1) for time-harmonic waves can be calculated by perturbation
analysis. The solution to (1) is assumed to take the form

u x t u βu( , ) = + ,(0) (1) (5)

where u(0) and u(1) represent the general solution and second-order
perturbation solution, respectively. Generally, the perturbation solu-
tion is assumed to be proportional to the propagation distance,

u xf τ= ( ),(1) (6)

where τ t x c= − / and f τ( ) is the undetermined function.
If the excitation contains two sinusoidal components of different

frequencies for the S0 mode, the general solution can be expressed as

u x t A f t k x A f t k x( , ) = cos( − ) + cos( − ),(0)
1 1 1 2 2 2 (7)

where pairs k1, k2, A1, A2, and f1, f2 are respectively the wavenumbers,
amplitudes, and frequencies of the two sinusoidal components. The
unknown function f τ( ) can be determined by substituting (6) and (7)
into (5) and subsequently into (1). This gives
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Therefore, the perturbation solution (5) becomes
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This expression gives the time–space response of the nonlinear
system under a mixed-frequency excitation. Because of the nonlinearity
in the stress-strain relationship, the two sinusoidal components inter-
act with each other, from which appears the sidebands at the sum and
difference frequencies of the excitations.

Considering this nonlinear solution of the wave equation for two
sinusoidal excitations, the acoustic nonlinearity parameter β can be
written in the form

β
A
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where A f f+1 2 is the amplitude of the sideband at the sum frequency of
the excitations. As shown in the above equation, the proposed acoustic
nonlinearity parameter is related to the propagation distance, the
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