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h i g h l i g h t s

� The ARES code is verified by calculating C5G7 3-D extension benchmark.
� Refinement in spatial and angular domain discretization is investigated.
� The ARES results are in excellent agreement with the reference MCNP calculations.
� Parallel makes ARES possible to conduct large scale neutron transport calculations.
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a b s t r a c t

High-fidelity neutron transport calculation is essential to enhance and improve the design of nuclear sys-
tems. This paper describes the transport solvers in ARES and presents ARES solutions of the 3-D extension
C5G7 benchmark problem, a small LWR core model without spatial homogenization. The transport cal-
culation is paralleled based on spatial-angle domain decomposition and optimal sweeping scheduling
algorithm, which makes it possible to conduct neutron transport calculations with fine enough dis-
cretization to get high-resolution solutions. The multiplication factor and the normalized pin power
are computed and compared with the reference MCNP calculations. Refinement in spatial and angular
discretization was investigated and the calculation accuracy is studied via the difference of the multipli-
cation factor from reference value and via the root-mean-square and maximum norm of the error in the
pin power. The results were found to be in good agreement with reference, demonstrating that ARES can
reach a good accuracy in complex criticality calculations.

� 2017 Elsevier B.V. All rights reserved.

1. Introduction

In the nuclear engineering community, neutron transport calcu-
lations, especially for large scale problems, are central to predicting
core power distribution, determining the criticality state of the
reactor and conducting shielding design. Nevertheless, the numer-
ical simulation of the full steady state transport equation (Lewis
and Miller, 1993) remains a challenging issue due to the high
dimensionality of the phase-space and the heterogeneity in com-
plex geometrical configurations.

In 2003, an extension of the three-dimensional C5G7 bench-
mark (Smith and Lewis, 2005) was proposed to provide a challeng-
ing test to deterministic transport methods. Traditionally, direct
transport calculation for the reactor core heterogeneous geome-
tries was not feasible due to the limited capability of computers.

However, with the development of computer capability, Cartesian
discrete ordinates method has been applied for assembly-level cal-
culations (Pautz, 2005; Schunert and Azmy, 2013) and new dis-
crete ordinate codes, such as PARTISN (Alcouffe et al., 2005;
Dahl, 2006), DENOVO (Evans et al., 2010; Davidson et al., 2014),
were developed with the ability to conduct large-scale transport
calculations.

In order to examine the critical calculation capabilities of the
three-dimensional, parallel, discrete ordinates code system ARES
(Zhang et al., 2015) for problems with no spatial homogenization,
the well-known C5G7 extension benchmark was calculated. To
obtain reliable solutions and optimal angular-spatial resolution,
refinements in spatial and angular domain are investigated. The
results were compared with the reference MCNP solutions.

This paper presents ARES solutions to 3-D extension C5G7
benchmark problems. The remainder of this paper is organized as
follows. The transport calculation solvers of ARES, including itera-
tion process and parallel sweeping algorithms, are described in
Section 2. The specification and calculation details of benchmark
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problems are presented in Section 3 and the calculation results are
given in Section 4. Concluding remarks are in Section 5.

2. Transport solvers in ARES

ARES is a multi-dimensional parallel discrete ordinates neutral
particle transport code that uses state-of-the-art solution methods
to obtain accurate solutions to the linear Boltzmann transport
equation. The steady-state transport equation solved in ARES is
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where wðr;X; EÞ is angular neutron flux, and the independent

variables are energy E, spatial variables r
! ¼ ðx; y; zÞ and angular

variables X
!
¼ ðh;uÞ. ARES currently provides diamond difference

with or without linear fixup, theta-weighted, directional theta-
weighted, exponential directional weighted and linear discontinu-
ous finite element spatial discretization schemes. Discrete ordinates
differencing in angle and spherical harmonics expansion of the scat-
tering source are adopted. And first collision source method is
employed for ray effects mitigation. In the following subsections,
we simply write down the iteration strategy and parallel transport
sweeping algorithms employed in ARES.

2.1. Iteration strategy

To make the following discussion simple and clear, the steady-
state Boltzmann transport equation can be expressed in operator
form (Slaybaugh, 2011)

Lw ¼ MS/þ 1
k
MvfT/ ð2Þ

where L ¼ X̂ � r þ Rt is the streaming-plus-collision operator, M is
the operator that converts harmonic moments to discrete angles,
S is the scattering matrix, v is the block matrix fission spectrum

and fT is the block matrix of production cross section. Flux moments
/ and angular flux w are related by operator D, which integrates dis-
crete angles into flux moments through quadrature rules,

/ ¼ Dw ð3Þ
The traditional power iteration (Adams and Larsen, 2002) is

adopted to calculate eigenvalues,
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Within each power iterations, solving equation (4) is equivalent
to conduct a fixed source calculation as follows,

ðI� DL�1MSÞ/ ¼ DL�1Q ð6Þ
where Q represents external fixed source for fixed-source problems
and fission source for eigenvalue problems. Actually, Eq. (6) is a
serial coupled equation among energy by scattering source. And
Gauss Seidel iteration is commonly used over energy groups and
can be written as follows,
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Regarding Eq. (7), one must solve G within-group equations
over angle-space, and they have the general form,

Lgwg ¼ MS/g þ �Qg

/g ¼ Dwg

(
ð8Þ

where �Qg involves all sources for group g excluding the within
group scattering.

ARES supports two strategies for solving the within-group
equation. The default is source iteration,
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However, source iteration will be increasingly inefficient as the
problem becomes more scattering dominated. Alternatively, Kry-
lov method (Warsa et al., 2004), which has been demonstrated to
have both high efficiency and high robustness, is available in ARES
to solve the within-group equation.
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Note that the operator L�1
g is an essential step no matter which

method is selected. In ARES, L�1
g is solved exactly in a transport

sweep, which is defined as the calculation of all angular fluxes in
the problem given some guess or iterate for the total source. Actu-
ally, the transport sweep requires the majority of computational
effort in a transport calculation. During a transport sweep, each
spatial mesh is solved in a specified order for a single direction
in the discrete ordinates. This order is constrained by the fact that
a spatial mesh cannot be solved for a particular direction until all
its upwind neighbors have been solved. The details about paral-
lelism of transport sweep on structured meshes, the most compu-
tational intensive part of a transport calculation, are presented in
Section 2.2.

2.2. Parallel algorithm

Parallel is an essential part for the high-fidelity neutron trans-
port calculations, not only to reduce the long calculation times,
but also to decompose the excessive memory demand.

Domain decomposition strategy and sweep scheduling algo-
rithm constitute the framework of parallelism in ARES. Without
loss of generality, we restricted our attention to problems with
reflective boundary conditions at x�, y�, z� directions and vac-
uum boundary conditions at x+, y+, z+ directions, which can be
viewed as one eighth of a fully symmetric three-dimensional prob-
lem without reflective boundary conditions.

For spatial domain decomposition, as illustrated in Fig. 1, we
consider a Nx � Ny � Nz spatial mesh and a virtual processor topol-
ogy containing Px � Py � Pz processors. Defining ðAx; Ay; AzÞ as the
subdomain number of meshes in each direction and ðxx;xy;xzÞ
as overload factors (Adams et al., 2013) in each direction, the spatial
decomposition proceeds as follows. The whole spatial domain is
decomposed into xx �xy �xz blocks. And each block is decom-
posed into subdomains of size ðAx; Ay; AzÞ on each processor. For
presenting conveniently, we have assumed that each subdomain
contains the same number of meshes in each direction, which is
not a requirement and could otherwise induce load imbalance
among processors. Concentrating on the decomposition process,
we get

Ax ¼ Nx
xxPx

; Ay ¼ Ny

xyPy
; Az ¼ Nz

xzPz
ð11Þ

For angular domain decomposition, angle aggregation factor,
Am, is defined as the number of directions contained in each angle
set. And the Am directions must be within the same octant.
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