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h i g h l i g h t s

� Numerical simulations of flow induced vibration of nuclear fuel rods in axial turbulent flows.
� Fluid-structure interaction simulations of strongly coupled problems.
� Assessment of partitioned coupling algorithms and discretization schemes suitable for strongly coupled FSI problems.
� Checking the effect of the use of different URANS models to simulate Turbulence Induced Vibrations.
� Validating the results obtained from the URANS models to experimental test cases.
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a b s t r a c t

Flow induced vibration (FIV) plays an important role in nuclear industry. In nuclear reactors, the FIV are
caused by a strong interaction between the fuel rods and the turbulent coolant flow around these rods.
Numerical prediction of these strongly coupled fluid structure interaction (FSI) has been a challenge and
is the main focus of this work. In this article, three aspects of FSI problems are numerically studied. In this
first part, two different coupling schemes namely IQN-ILS and Guess-Seidel are thoroughly assessed for a
laminar flow single rod experiment performed by Vattenfall (Lillberg et al. 2015). As a next step, a tur-
bulent flow single rod experiment is selected to assess the capabilities of two different RANS models,
i.e. a linear k�x SST and a non-linear Reynolds Stress Model. Lastly, an application based experiment
of Chen and Wambsganns (1972) is selected to validate the combined effect of the selected RANS model
along with the coupling method.

� 2017 Elsevier B.V. All rights reserved.

1. Introduction

In nuclear power plants, flow induced vibration (FIV) may cause
fatigue problems, stress corrosion cracking, possible failure modes
and fretting wear (Luk, 1993). This may eventually leads to nuclear
safety issues and substantial standstill costs due to unplanned out-
age. Reports of flow-excited failures of heat exchanger tubes began
appearing in the 1950s (Weaver et al., 2000). As was the case for
the San Onofre Nuclear Generation Station, where FIV led to pre-
mature wear in over 3000 tubes, causing a leak of radioactive cool-
ant in recently renewed steam generators in Units 2 and 3. The
increase in power density of nuclear plants often results in an
increase of coolant flow, or a change of cooling liquid, or a change
in the component material or dimensions. These changes may alter
the flow and structural behavior, and cause flow-induced
vibrations to become more prominent (Weaver et al., 2000). It is

therefore important to asses this phenomenon early in the design
process. Because of this, the field of FIV is becoming an increasingly
important area of research in the nuclear field.

To correctly predict the FIV, a number of analytical models have
been developed. However, these models are developed for slender
bodies in axial flow by decomposing the fluid forces into an invis-
cid and viscous part. The contributions of these inviscid forces
were first derived by Lighthill (1960), while the viscous forces were
based on empirical relations, obtained from experiments on speci-
fic cases. The downside being the lack in accuracy when applied to
other or less simplified cases. In a nuclear power plant, the use of
high-density moderators leads to a low density ratio between the
densities of the solid (qs) and the fluid (qf ). Due to the high density
fluid, the inertial forces that interact with solid bodies are of a
higher order of magnitude. The high inertial forces have a direct
effect on the dynamic behaviour of the solids, resulting in a strong
coupling between fluid and the in-core structural elements. This
phenomenon is also known as the Added-Mass Effect. When the
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added-mass effects are high, the coupling gets stronger, and hence,
it is more viable to solve the problems numerically. Numerically
simulating strongly coupled problems require a coupling between
such fluid and structure solvers.

Fluid-Structure Interaction (FSI) problems can be numerically
solved either by monolithic or the partitioned approach. The
Monolithic approach solves the fluid and solid equations simulta-
neously as one set of equations, which can solve fully coupled
problems. These solvers are problem specific and implementation
of a new code could be required depending on the simulation.
On the other hand, partitioned approach makes use of existing
fluid and solid solvers which are coupled through an external cou-
pling algorithm. Thus, this provides more flexibility and reliability
in terms of the used solvers. The coupling algorithm for a parti-
tioned solver acts as a post-processing step for each solver (solid
and fluid), it iterates between the data inputs and outputs from
the solvers till the required conditions are satisfied. Since the fluid
and solid equations are solved separately, the coupling algorithm
introduces a coupling error within the solution. For loosely coupled
problems partitioned approach is very efficient, since the coupling
errors involved are very low. However, most FSI problems faced in
nuclear applications are strongly coupled. When dealing with
strongly coupled problems, it is shown that partitioned solvers suf-
fer from poor convergence or even instability, therefore a strongly
coupled method is often necessary (Causin et al., 2005; Yang et al.,
2008; Banks et al., 2014; Degroote, 2013).

With the progress in numerical methods, there have been sev-
eral methods that have been introduced in the past, which can
solve strongly coupled problems. In this study, two of these cou-
pling algorithms, i.e. IQN-ILS and Gauss Seidel, are assessed for
strongly coupled cases. The Gauss Seidel method is one of the ear-
liest and a popular coupling scheme used in FSI solvers. Although,
this method is simple and efficient in most of the cases, it has its
own drawbacks, which would be discussed further in this article.
The IQN-ILS is a Quasi-Newton method, which estimates the
inverse Jacobian to attain the faster convergence. This is a state
of the art coupling algorithm, which has shown better performance
in some earlier studies (Degroote, 2010; Degroote, 2013; Banks
et al., 2014). One of the aims of the present study is therefore to
validate the capabilities of both the coupling methods to solve
the strongly coupled problems. As a next step, one of these tested
methods in combination with a turbulence model is used to predict
flow induced vibrations. The description of these used coupling
methods is given in Section 2. This is followed by the results and
discussions related to the selected validation and the application
cases in Section 3. The conclusions drawn from these test cases
are summarized in Section 4.

2. Numerical methods

In a partitioned approach, the fluid and solid equations are
solved with different numerical methods. The fluid domain is
solved using a computational fluid dynamic (CFD) method and
the solid using a computational solid mechanics (CSM) method.
To be able to model the interaction of these two models, the two
methods are coupled at the fluid-solid interface. A stable and effi-
cient numerical technique is essential for the study of FSI. In the
case of strongly coupled interaction, the solvers are called multiple
times during a time step until both the kinematic and the dynamic
equilibrium conditions are satisfied.

2.1. Governing equations of fluid

The Navier-Stokes (N-S) equations, govern the flow of fluid. The
twomain equations for an incompressible fluid in the N-S equations

are the conservation of mass and momentum. The mass and
momentum conservation equations are given by Liu et al. (2013):
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with, u being the fluid velocity, qf the fluid density, t the time, rf

the fluid stress tensor and f is the body force. For Newtonian fluids,
the stress tensor can be written as:
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with, p the pressure and l the fluid dynamic viscosity.

2.2. Governing equations of solid

The deformation of an elastic incompressible solid is governed
by the conservation of momentum:

qs
@2ds

@t2
¼ r � rþ f ð4Þ

with, ds being the displacement of the structure, qs the solid den-
sity, r the solid stress tensor and f the body forces.

2.3. Coupling between the fluid and solid equations

At the interface between the solid and the fluid, the kinematic
condition requires the velocity of the fluid to be equal to the time
derivative of the displacement of the solid interface:

@ds

@t
¼ uf ð5Þ

The dynamic condition requires the stress on the interface due
to the fluid and solid surface normal to be equal, also called as
equality of traction:

rs � ns ¼ �rf � nf ð6Þ
The subscript s and f depicts the structural solver and fluid

respectively. When using a Dirichlet-Neumann decomposition, the
flow equations can be solved for a given velocity (or displacement)
at the fluid-structure interface (Dirichlet boundary condition), and
the solid equations are solved for a given traction distribution on
the interface (Neumann boundary condition). Assuming, the dis-
placement vector as, x ¼ ds and traction as y ¼ rf � nf , the response
of the structure solver can be therefore written as:

x ¼ S yð Þ ð7Þ
where SðyÞ is the function resolving the structure equations (Eq.
(4)). Similarly, for fluid solver:

y ¼ F xð Þ ð8Þ
where FðxÞ is the function resolving the fluid equations (Eqs. (1) and
(2)). At each time step, the fixed point equation must be satisfied

x ¼ S � F xð Þ ð9Þ
where S � FðxÞ ¼ SðFðxÞÞ. Therefore, the residual function, RðxÞ is cal-
culated as

R xð Þ ¼ S � F xð Þ � x ð10Þ
To reach convergence, this residual should be minimized, which

can be done using an optimization algorithm. Well known
approaches in FSI are the Gauss-Seidel method, fixed under-
relaxation, Aitken under-relaxation, and the IQN-ILS method
(Degroote, 2013).
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