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a b s t r a c t

A 1D TFM numerical simulation of near horizontal stratified two-phase flow is performed where the TFM,
including surface tension and viscous stresses, is simplified to a two-equation model using the fixed-flux
approximation. As the angle of inclination of the channel increases so does the driving body force, so the
flow becomes KH unstable, and waves grow and develop nonlinearities. It is shown that these waves
grow until they reach a limit cycle due to viscous dissipation at wave fronts. Upon further inclination
of the channel, chaos is observed. The appearance of chaos in a 1D TFM implies a nonlinear process that
transfers energy intermittently from long wavelengths where energy is produced to short wavelengths
where energy is dissipated by viscosity, so that an averaged energy equilibrium in frequency space is
attained. This is comparable to the well-known turbulent stability mechanism of the multi-
dimensional Navier–Stokes equations, i.e., chaos implies Lyapunov stability, but in this case it is strictly
a two-phase phenomenon.

� 2016 Elsevier B.V. All rights reserved.

1. Introduction

It is well known that the one-dimensional two-fluid model (1D
TFM) may be rendered well-posed once appropriate short wave-
length physics is incorporated. For example the surface tension
force makes the TFM well-posed for horizontal stratified flows
beyond the Kelvin–Helmholtz (KH) instability (Ramshaw and
Trapp, 1978). This is a proper physical solution to the linear stabil-
ity problem, but the finite exponential wave growth remains. How-
ever, the TFM is inherently non-linear, and little is known about its
non-linear stability. The purpose of this paper is to investigate the
Lyapunov stability of a 1D TFM beyond the KH criterion.

The state-of-the-art of the 1D TFM stability analysis remains
more or less where it was when the present generation of US
TFM nuclear reactor safety codes were written in the early seven-
ties, that is, within the realm of linear stability theory. Later
advances in the field of non-linear dynamics and chaos have not
transcended yet into the understanding of the stability of the TFM.

In the first place Whitham (1974) elaborated a set on non-linear
solutions to the two-equation shallow-water theory (SWT) consist-
ing of shocks and expansion waves and identified the kinematic

SWT instability. But SWT differs from TFM in one important
aspect: it does not include the dynamic KH instability. Beyond that,
Kreiss and Yström (2002) (KY) analysed a two-equation model that
is dynamically similar to the TFM beyond the KH instability. They
obtained shocks and expansion waves similar to SWT and observed
that the viscous force limits the growth of the waves. Furthermore,
Fullmer et al. (2014a) showed that the KY equations are chaotic.

Recently Lopez de Bertodano et al. (2013) derived the two-
equation fixed-flux model from the TFM that reduces exactly to
SWT for flow conditions below the KH instability, thus rendering
the TFM amenable to Whitham’s analyses. The fixed-flux model
is based on the fixed flux assumption, which allows local instabil-
ities like SWT and KH, but precludes global instabilities like flow
excursion and density waves. In this paper the fixed-flux model
is applied to perform a stability assessment of Thorpe’s experiment
(Thorpe 1969) beyond the initial wave growth period, including
linear analysis and nonlinear simulations, resulting in limit cycles
and chaos.

2. Fixed-flux two-equation model

The incompressible fixed-flux TFM of Lopez de Bertodano et al.
(2013) obtained from the full TFM of Fullmer et al. (2014b) and val-
idated with the experiment of Thorpe (1969) is given by:
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is the void convection coefficient and the algebraic drag terms are
grouped as
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Finally, it can be shown that the combined viscous force, assum-
ing the viscosity is the same for both phases, is:
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Two more equations are needed for closure. The first is the void
fraction restriction

a1 þ a2 ¼ 1: ð6Þ
Secondly we consider the total flux to express the velocity of

one component in terms of the other. By combining the time
derivative of Eq. (6) with the sum of the phasic continuity equa-
tions one gets:
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where j is the total volume flux.
Eq. (7) shows that, provided that the phase densities are con-

stant, j is spatially uniform, i.e., jðx; tÞ ¼ jðtÞ. For the present case
of Thorpe (1969), stagnated flux restriction applies, i.e., jðtÞ ¼ 0.

This key assumption greatly simplifies the TFM equations without
removing the local material instabilities.

If C is negative and surface tension is neglected, the
two-equation fixed-flux model in the limit rq ! 0 becomes the
well-known 1D SWT equations (Whitham 1974; Wallis 1969). Fur-
thermore C ¼ 0 leads to the long wavelength Kelvin–Helmholtz
criterion, e.g., see Eq. (2–147) of Ishii and Hibiki (2006),

ðu2 � u1Þ2 >
1� rq
rq

ð1� a1ÞgyH ð8Þ

If C is positive the equations represent the Kelvin–Helmholtz
unstable regime which is the case of the TFM, beyond the scope
of SWT, under study. We are now in a position to define the types
of waves and instabilities that will be analysed.

The dynamic wave speed, derived later, is given by c ¼ ffiffiffiffiffiffiffiffiffiffiffiffi�a1C
p

and the corresponding instability condition is C > 0, associated
with the dynamic KH instability. On grounds of the analogy
between the TFM and SWT, it may be stated that the linear and
non-linear behaviour of the dynamically stable TFM (i.e., C < 0)
may be understood in terms of the many well-known results
derived in SWT. If C ¼ 0 and F ¼ 0 the system becomes the water
faucet model of Ransom (1984) which is of practical interest to
the verification of the TFM for nuclear reactor safety codes. The
case C > 0 corresponds to the dynamically unstable incompress-
ible TFM, and it is of unique interest to two-phase flow analysis
in general and reactor safety codes in particular, because it is ill-
posed when surface tension is not included. However, the nonlin-
ear behaviour of the well-posed case has not been explored beyond
the pioneering mathematical analyses of Kreiss and Yström (2002)
and Keyfitz et al. (2004).

2.1. Viscous term

Additional constitutive equations are required for the closure of
the wall and interfacial shear terms and the effective viscosities.
For the present calculations the values are f 1 ¼ f 2 ¼ 0:005; and
f i ¼ 0:014. More importantly, the effective viscosity needs to be
specified. Alas, a complete model for the turbulent viscosity is
not presently available. In its stead, a rough, order-of-magnitude
model is proposed here, which hopefully suffices for the numerical
simulations. Since the densities of the Thorpe experiment (1969)
are quite close, a first-order approximation is to neglect the

Nomenclature

c wave speed (m s�1)
C coefficient of void gradient term in momentum equa-

tion (m2 s�2)
C(r) number of points of a trajectory contained in hyper-

sphere of radius r
f friction factor
g acceleration due to gravity (m s�2)
H channel height (m)
j volumetric flux (m s�1)
k wave number (m�1)
L test section length (m)
r radius
rq density ratio
u velocity (m s�1)

Greek letters
a volume fraction
k wavelength (m)

l dynamic viscosity (Pa s)
m kinematic viscosity (m2 s�1)
q density (kg m�3)
r surface tension (N m�1)
h angle of channel inclination (rad)
x angular frequency (s�1)

Subscripts
1 heavier phase
2 lighter phase
i interfacial
q density ratio

Acronyms
KH Kelvin–Helmholtz
SWT shallow water theory
TFM two-fluid model
1D one dimensional
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