Accepted Manuscript

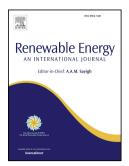
Modelling tidal stream turbines in a three-dimensional wave-current fully coupled oceanographic model

Xiaorong Li, Ming Li, Stuart McLelland, Laura-Beth Jordan, Laurent Amoudry, Rafael Ramirez-Mendoza, Peter Thorne

PII: S0960-1481(17)30119-2

DOI: 10.1016/j.renene.2017.02.033

Reference: RENE 8540


To appear in: Renewable Energy

Received Date: 1 October 2016
Revised Date: 11 February 2017

Accepted Date: 13 February 2017

Please cite this article as: Li X, Li M, McLelland S, Jordan L-B, Amoudry L, Ramirez-Mendoza R, Thorne P, Modelling tidal stream turbines in a three-dimensional wave-current fully coupled oceanographic model, *Renewable Energy* (2017), doi: 10.1016/j.renene.2017.02.033.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Modelling tidal stream turbines in a three-dimensional wave-current fully coupled oceanographic model

Xiaorong Li^a, Ming Li^{b,*}, Stuart McLelland^c, Laura-Beth Jordan^c, Laurent Amoudry^d, Rafael Ramirez-Mendoza^d, Peter Thorne^d

^aSchool of Environmental Sciences, University of Liverpool, Liverpool, L69 7ZT, U.K.
 ^bSchool of Engineering, University of Liverpool, Liverpool, L69 3GQ, U.K.
 ^cSchool of Environmental Sciences, University of Hull, Cottingham Road, Hull, HU6 7RX

^dNational Oceanography Centre, Joseph Proudman Building, 6 Brownlow Street, Liverpool, L3 5DA

Abstract

A tidal turbine simulation system is developed based on a three-dimensional oceanographic numerical model. Both the current and turbulent controlling equations are modified to account for impact of tidal turbines on water velocity and turbulence generation and dissipation. High resolution mesh size at the turbine location is assigned in order to capture the details of hydrodynamics due to the turbine operation. The system is tested against comprehensive measurements in a water flume experiment and results of Computational Fluid Dynamics (CFD) simulations. The validation results suggest that the new modelling system is proven to be able to accurately simulate hydrodynamics with the presence of turbines. The developed turbine simulation system is then applied to a series of test cases in which a standalone turbine is deployed. Here, complete velocity profiles and mixing are

^{*}Corresponding author. Tel: +44 151 794 5242

 $Email\ addresses: \verb|lixr@liverpool.ac.uk| (Xiaorong\ Li), \verb|mingli@liverpool.ac.uk| (Ming\ Li)$

Download English Version:

https://daneshyari.com/en/article/4925978

Download Persian Version:

https://daneshyari.com/article/4925978

Daneshyari.com