Renewable Energy 113 (2017) 855-866

Contents lists available at ScienceDirect

Renewable Energy

journal homepage: www.elsevier.com/locate/renene

Real time procurement of energy and operating reserve from Renewable Energy Sources in deregulated environment considering imbalance penalties

Renewable Energy

癯

Anuj Banshwar ^{a, *}, Naveen Kumar Sharma ^b, Yog Raj Sood ^c, Rajnish Shrivastava ^d

^a National Institute of Technology, Hamirpur, H.P., India

^b Department of Electrical Engineering, IKG Punjab Technical University, Punjab, India

^c Director, National Institute of Technology, Puducherry, India

^d Department of Civil Engineering, Maulana Azad National Institute of Technology, Bhopal, M.P., India

ARTICLE INFO

Article history: Received 30 March 2017 Received in revised form 23 May 2017 Accepted 18 June 2017

Keywords: Operating reserve Penalty Procurement cost Renewable power producer Sequential dispatch Social benefit

ABSTRACT

Renewable Energy Sources (RES) have prompted an additional burden on power system planners due to their stochastic nature. Hence it increases the need for Ancillary Services (AS) in power system. In deregulated electricity markets, AS has become an important issue because they are necessary for reliable and secure operation of a power system. Operating Reserve (OR), considered in this paper, is a measure of generators ability to increase their output under contingencies. ISO uses this service either for balancing purpose or for replacing the energy that had been scheduled to be provided by the unit that malfunctions. Thus establishing an efficient market for reserve services has become crucial. The premises of this paper is the development of penalty based Short-Term Market (STM) for the procurement Cost (PC) are investigated for the development of efficient STM. The proposed approach has been analyzed on IEEE-30 bus test system by implementing a sequential dispatch approach on various market structures. The results obtained under different market scenarios shows that there is a mandated requirement of effective penalty mechanism in order to discourage the imbalance behavior of RPPs.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Traditional power systems have been dominated by large Vertical Integrated Utilities (VIU) that performs all the activities related to generation, transmission and distribution of electric power within their obliged domain. These bundled utilities generally work under the regulated environment of the government jurisdiction [1]. During the early nineties, various electrical utilities of mostly developed economies have undergone through the unbundling process by changing their way of operation from being VIU to open market systems that consist of three independent components viz. Generation Companies (GENCOs), Transmission Companies (TRANSCOs), and Distribution Companies (DISCOs) [2]. The deregulation of power sector provides a fair competition among producers as well as consumers. Unbundling of these utilities primarily

* Corresponding author. E-mail address: anujbanshwar@gmail.com (A. Banshwar). focuses on improving system efficiency, cost minimization by introducing more choices to the utilities by developing competitive markets and, better service to the electrical consumers [3].

In deregulated paradigm, the market existing between suppliers (GENCOs) and retailers (DISCOs) is called the wholesale marketplace. An ISO as an independent authority is appointed for the creation of the set of rules for ensuring sufficient control over producers and consumers for maintaining security and reliability of the electrical system while maximizing market efficiency. The GENCOs sell their energy either through long-term bilateral contracts with DISCOs or by bidding in STM operated by the ISO [4]. The basic bidding structure in STM is shown in Fig. 1.

Substantial unbundling of products and services is to be expected under restructuring process. Surely electricity provided at different times will be treated differently. It also raises the issue of AS that could be separated or bundled depending on the economics of supply and the nature of customer demand [5]. AS has become an important issue because they are necessary for the reliable and secure operation of a power system. It is essential to procure these

Nomencla	ature:
----------	--------

Nomenclature:	Symbols
	<i>AC_i</i> Available capacity of <i>i</i> th GENCO
	ARC _i Available reserve capacity of <i>i</i> th GENCO
Abbreviations	<i>E_i</i> Quantity of energy accepted in EM by <i>ith</i> GENCO
AC Available Capacity	E_{gi}^{j} Quantity of energy offered in EM by <i>i</i> th GENCO
AS Ancillary Services	$\vec{E_{k_{\text{MD}}}^{k}}$ Ouantity of energy bid in EM by i^{th} NFD
AEMO Australian Energy Market Operator	E_I Energy requirement
ARC Available Reserve Capacity	E_{Losses} Energy losses in EM
ASM Ancillary Services Market	EP_{ri} Energy payment by the ISO to the <i>i</i> th GENCO
CAISO California Independent System Operator	EP_{NFDi} Energy payment received by the ISO from the <i>i</i> th NFD
CBM Cross-Border Balancing Market	$g(V, \varphi)$ Power flow vectors
CEM Competitive Electricity Market	<i>MVAf^{max}</i> Maximum rating of transmission line connected
CPP Conventional Power Plants	between bus <i>i</i> and <i>i</i>
CSP Concentrated Solar Power	N_{σ} Total number of GENCOs
DAM Day Ahead Market	N _{FD} Total number of Firm Demand
DAEM Day Ahead Energy Market	N _{NED} Total number of Non-Firm Demands
DARM Day Ahead Reserve Market	P_{ri} Real power generation at PV bus <i>i</i>
DISCOs Distribution Companies	<i>P^{min}</i> Minimum value of real power generation allowed at PV
ERCOT Electric Reliability Council of Texas	bus i
EM Energy Market	<i>P^{max}</i> Maximum value of real power generation allowed at
ESS Energy Storage Scheme	PV bus i
FD Firm Demand	<i>P</i> : Calculated real powers for PO bus <i>i</i>
FM Forward Market	P ^{net} Specified real power for PO bus <i>i</i>
GENCOs Generation Companies	P_m Calculated real power for PV busm
IDM Intra Day Market	P ^{net} Specified real power for PV busm
IDEM Intra Day Energy Market	PF^{J} Price of energy offered in EM by i^{th} GENCO
IDRM Intra Day Reserve Market	PE_{g_1} Price of energy bid in EM by i^{th} NED
ISO Independent System Operator	P_{NFDi} Price of energy bid in Eiviby <i>i</i> with CENCO
LMP Locational Marginal Price	PR ^g Price of reserve offered in RM by t ^{en} GENCO
MW Mega Watt	R_{gi} Quantity of reserve capacity offered in RM by l^{m}
MWh Mega Watt-hour	GENCO
NFD Non-Firm Demand	Q_{gi} Reactive power generation at PV bus <i>i</i>
OF Objective Function	Q_{gi}^{min} Minimum & maximum value of reactive power
OEM Ontario Electricity Market	Q ^{max} Maximum value of reactive neuron concertion allowed
OPF Optimal Power Flow	<i>Q_{gi}</i> Maximum value of reactive power generation anowed
OR Operating Reserve	al PV DUS I
PAB Pay-As-Bid	Q_i Calculated reactive powers for PQ bus <i>i</i>
PC Procurement Cost	Q_i^{intern} Specified reactive power for PQ busi
PEV Plug-in Electric Vehicle	R _i Quality of reserve accepted in RM by I ^{en} GENCO
PJM Pennsylvania-New Jersey-Maryland Interconnection	R_L Reserve requirement
PVP Photo-Voltaic Plant	Reserve losses III RM
RES Renewable Energy Source	KR _i Ramp rate offered by t ^{er} GENCO
RPP Renewable Power Producer	V Vollage Inagilitude
RM Reserve Market	v_i value of voltage inagilitude of each PQ buses
RR Ramp Rate	v_i^{max} Ninimum value of voltage magnitude of each PQ buses
RT Real Time	Vinter IVIAXIIIIUIII Value OI Voltage IIIagiiituue oi eacii PQ Duses
RTM Real Time Market	Ψ Fildse dilgte
RTEM Real Time Energy Market	φ_i value of voltage alight at bus <i>i</i>
RTRM Real Time Reserve Market	φ_i initial anowed value of voltage angle at DUS <i>l</i>
SB Social Benefit	φ_i invariant anowed value of voltage angle at DUS <i>i</i>
STM Short Term Market	Λ_i Locational marginal price at bus <i>i</i>
TRANSCOs Transmission Companies	Specific response time for reserve
VIU Vertical Integrated Utilities	φ Penalty factor
VPP Virtual Power Producer	
WPP Wind Power Plant	

services in order to maintain required generation-demand balance and to guarantee the security of the supply. Frequency control, load following, operating reserves, voltage regulation, black-start services, etc. are considered as main AS in almost every country [6,7].

Under this regime, ISO has to procure these services from AS providers as these are no longer be treated as an integral part of the system. It is the matter of discussion and market structure about how to obtain and paid these services [8]. Our attention in this paper is limited to procurement of OR, which is a measure of GENCOs ability to increase their output under contingencies like unscheduled generation outages or sudden unexpected load variation, as one of the important AS [9]. Establishing an efficient Download English Version:

https://daneshyari.com/en/article/4926078

Download Persian Version:

https://daneshyari.com/article/4926078

Daneshyari.com