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a b s t r a c t

Large Eddy Simulations of the turbulent flow over an array of wind turbines have been performed to
evaluate a model-free approach to power optimization. Two different implementations have been tested:
(i) individual extremum-seeking control (IESC), which optimizes the power of the single turbines indi-
vidually; (ii) nested ESC (NESC), which coordinates the single controllers to seek a farm-level optimum.
Both schemes provide a gain over the baseline, which operates all the turbines with ideal design set-
points. These settings are found to be sub-optimal for waked turbines. The NESC provides a slightly
larger power production than the independent ESC, albeit it has a slower convergence to the optimum.
Therefore, depending on wind variability, both strategies may be employed. IESC is more appropriate for
sites with wind conditions changing on a short time scale, while NESC should be preferred when the
wind conditions are quite stable. Since the extremum-seeking algorithm is model-free, uncertainties in
atmospheric conditions, aging of the turbine or numerical dissipation due to the sub-grid model should
not change the general conclusions reached in this paper. This methodology can provide reliable results
and permits to gain, through the analysis, a useful knowledge on the mechanisms leading to the per-
formance enhancement.

© 2017 Published by Elsevier Ltd.

1. Introduction

In recent years, the deployment of largewind farms has enabled
the wind energy industry to increase its penetration in electricity
markets around the globe. Despite this promising trend, further
reduction of the levelized cost of energy (LCOE) would be needed to
attain the double-digit penetration levels set as targets in the U.S.
and other countries. Advanced wind farm control strategies are
essential to develop more profitable and cost-effective wind plants.

Wind plant operation in off-design conditions, such as turbines
operating in waked conditions, represents an important challenge.
As turbines are placed closer to one another, the wakes developing
fromwindward turbines may not fully recover before impinging on
the trailing turbines. These working conditions are likely to reduce
energy capture and increase unsteady structural loads [1]. The
development and assessment of control systems to mitigate the
power losses due to wake interactions, and associated increase in
fatigue loads, are areas of active research [2e11].

Various approaches have been explored in the literature, ranging

from model-based optimization [2,3,5,9] to model-free methods
[4,6,7,10]. Some of the proponents for model-based optimization
have used simplified wake models. These engineering models are
usually characterized by lowcomputational cost and are suitable for
real-time implementation and/or rapid tuning of control algo-
rithms. However, these engineering models may present some
shortcomings related to the assumptions necessary to simplify the
physical description. Discrepancies in the predictions have been
reported when optimal operating settings devised with static en-
gineering models have been tested with higher-order aerodynamic
simulation tools, such as large-eddy simulation (LES) [11,12].

The flow within wind farmsd mainly because of wake in-
teractions dis characterized by unsteadiness and a high degree of
nonlinearity. Capturing the essential dynamics with simple
computationally fast models remains a difficult task. For this reason
model-free optimization, which does not rely on physical param-
eterizations of the plant, has also received attention in the field.

Model-free game theoretic methods have been proposed in
Ref. [6]. In this work, the authors optimize the power production by
adjusting the axial induction factor of each turbine using ran-
domized learning algorithms. Starting from a baseline condition,
the controller on each turbine randomly explores different set-
point values for the induction factors. The optimal guess is
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updated when the newly-tested set-point increases the perfor-
mance index, which is the power extraction of thewholewind farm
or a subset of it. The performance of the algorithms is tested using
the Jensen PARK model [13], which describes the flow in steady-
state conditions only, and assumes that the turbines introduce
wind velocity deficits that depend on the downstream distance
from the rotors and the axial induction factors.

Model-free gradient-based methods have also been studied by
various authors [4,7,10]. These algorithmsuse the gradientof the total
power, or subsets of it, to guide the search for control variables to-
ward the configuration that maximizes the wind-farm power. The
algorithms in Refs. [4,7] optimize power by adjusting axial induction
factors, while the method presented in Ref. [10] adjusts the available
turbine controls (e.g., torqueor blade pitch angle) tomaximizepower
production. References [4,7] evaluate the solutions with dynamic
versions of the PARK model, where the dynamics are introduced via
time delays to capture wake propagation. Reference [10] uses Sim-
WindFarm [14] for the evaluation of performance, whichmay also be
viewed as a dynamic extension of the PARK model. In the MPPT
method proposed in Ref. [4], the gradient of the power production
with respect to axial induction factors is computed using backward
finite difference based on the present and past values of the control
variables. On the other hand, the extremum-seeking algorithms in
Refs. [7,10] use an external dither perturbation on the control inputs
to estimate the relevant gradient information for optimization. By
proper selection of the dither signals, the approach in Refs. [7,10] can
be made more robust to turbulent wind fluctuations. The imple-
mentation in Ref. [7] seeks to determine all optimization variables
simultaneously. The approach in Ref. [10] takes advantage of a
decomposition structure, rigorously justified in Ref. [9] using dy-
namic programming, to sequentially search for each control param-
eter until a solution is found. The sequential search in Ref. [10] is
simpler to implement than the method in Ref. [7] and requires less
communication between the turbines.

Overall, these studies showed the feasibility and potential for
model-free optimization. However, algorithms have been evaluated
using simplified models, such as SimWindFarm [14] or dynamic
versions of the PARK model [13]. Given the state-of-art of high
performance computing, it is plausible to evaluate model-free al-
gorithms using more realistic computer models for the wind plant.
Such an approach will not only provide more accurate wind flow
state and turbine loadings, to better assess a control strategy, but
will also enable deeper insights into the mechanisms behind the
control solution.

In this paper, model-free Extremum-Seeking Control (ESC) is
coupled with a Large Eddy Simulation (LES) of a wind farm con-
sisting of three turbines aligned with the meanwind direction. This
simple configuration is selected to evaluate one of the possible
mechanisms used to manage wake interactions - shaping the in-
duction zone of aligned turbines via control of the rotor speeds of
each turbine [11]. Our work in this paper is motivated by the
following question:

What advantages does coordinated extremum seeking control
offer over the simpler case of applying extremum seeking control to
each turbine without coordination?

To answer this question we consider two scenarios. In the first
scenario, the extremum-seeking controllers on each turbine are set
to enhance the power production of each individual turbine. We
refer to this case as the individual ESC or IESC. In the second case, the
turbine's control systems are coordinated in a nested structure, as
proposed in Ref. [10], so that the performance index of an upstream
turbine takes into account the presence of downstream waked
turbines.We refer to this scenario as nested ESC orNESC. This nested
architecture for coordination is consistent with the decomposition
that results from applying dynamic programming to the (albeit

static) optimization problem of maximizing wind farm power by
jointly optimizing over all control inputs simultaneously [2,9].

In this work, generator torque control is used to maximize tur-
bine power, as it is usual in Region 2 (below rated power) opera-
tions. Each turbine uses the same control law, where the generator
torque is proportional to the square of the rotor speed [15e18]. The
constant of proportionality is the so-called torque gain, which is the
parameter adjusted in real-time by the IESC or the NESC for each
turbine. The results from IESC and NESC are compared with a
baseline reference that assumes the turbines are operating at their
nominal peak efficiency under uniform inflow using the standard
design value for the torque gain [16e18].

The main contributions of this paper are:

� Demonstrating ESC algorithms for power maximization in a LES
of an array of aligned wind turbines.

� Adapting an ESC implementation from the literature [19] to
power maximization in the presence of turbulence and propa-
gation delays due to wake interactions.

� Providing data (to our knowledge, for the first time) from high-
fidelity simulations to compare IESC with NESC, and elaborating
on mechanisms for power extraction under waked conditions.

A comparison of the IESC and NESC with the previous results in
the literature of model-free control of wind farms is not straightfor-
ward. In this paper, the control strategies are evaluated using LES as a
virtual wind farm, while previous works [4,6,7,10] employ time-
dependent wake models. On the same setup, LES and engineering
models may yield different predictions [11,12]. This prevents a direct
comparison with the published results. Furthermore, we use an
available turbine control parameter (the torque gain) to maximize
thepower. In contrast, theworks inRefs. [4,6,7] use the turbine's axial
induction factor as the control variable. To convert a commanded
axial induction factor into an available turbine control will likely
require a turbine model and the effective wind speed at the rotor
plane. In this regard, our work is closer to [10], although the present
control algorithms are based on a more advanced (faster conver-
gence) discrete-timeversionof ESC [19] than theoneused inRef. [10].

The remainder of the paper is organized as follows. Section 2
contains a brief description of the numerical code used to
perform LES. Section 3 describes the ESC algorithms. The core ESC
scheme as well as problem-specific modifications to take into ac-
count delays due to wake propagation are given. Key parameters of
the case study are given in Section 4. The results are discussed in
Section 5. Concluding remarks are presented in Section 6.

2. Numerical method

Large-eddy simulations have been performed using our in-
house code UTD-WF. The main features of this code may be
found in Ref. [12].

2.1. Navier-Stokes solver

The governing equations for the flow field are the filtered
incompressible Navier-Stokes equations:

vUi

vxi
¼ 0 (1a)
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þ v
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where Ui is the ith component of the velocity vector in the direction
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