Renewable Energy 112 (2017) 166-186

Contents lists available at ScienceDirect

Renewable Energy

journal homepage: www.elsevier.com/locate/renene

A coupled optical-thermal-electrical model to predict the performance of hybrid PV/T-CCPC roof-top systems

用

Renewable Energy

W. Li ^a, M.C. Paul ^{a, *}, M. Rolley ^b, T. Sweet ^b, M. Gao ^b, H. Baig ^c, E.F. Fernandez ^d, T.K. Mallick ^c, A. Montecucco ^a, J. Siviter ^a, A.R. Knox ^a, G. Han ^e, D.H. Gregory ^e, F. Azough ^f, R. Freer ^f

^a School of Engineering, University of Glasgow, Glasgow, G12 8QQ, UK

^b School of Engineering, Cardiff University, Cardiff, CF24 3AA, UK

^c Environment and Sustainability Institute, University of Exeter, Penryn, TR10 9FE, UK

^d Centre for Advanced Studies in Energy and Environment, University of Jaen, Jaen, 23071, Spain

e WestCHEM, School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, UK

^f School of Materials, University of Manchester, Manchester, M13 9PL, UK

ARTICLE INFO

Article history: Received 21 November 2016 Received in revised form 24 April 2017 Accepted 2 May 2017 Available online 3 May 2017

Keywords: Solar energy Crossed compound parabolic concentrator Photovoltaic cell Hybrid solar collector Outdoor condition Electrical model

ABSTRACT

A crossed compound parabolic concentrator (CCPC) is applied into a photovoltaic/thermal (PV/T) hybrid solar collector, i.e. concentrating PV/T (CPV/T) collector, to develop new hybrid roof-top CPV/T systems. However, to optimise the system configuration and operational parameters as well as to predict their performances, a coupled optical, thermal and electrical model is essential. We establish this model by integrating a number of submodels sourced from literature as well as from our recent work on incidence-dependent optical efficiency, six-parameter electrical model and scaling law for outdoor conditions. With the model, electrical performance and cell temperature are predicted on specific days for the roof-top systems installed in Glasgow, Penryn and Jaen. Results obtained by the proposed model reasonably agree with monitored data and it is also clarified that the systems operate under off-optimal operating ocndition. Long-term electric performance of the CPV/T systems is estimated as well. In addition, effects of transient terms in heat transfer and diffuse solar irradiance on electric energy are identified and discussed.

© 2017 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Flat-plate photovoltaic/thermal (PV/T) hybrid solar collectors, first-time proposed in 1978 [1] and later tested by Ref. [2], have been developed over the years for efficient solar energy utilization – excellent reviews of this subject were provided in Refs. [3,4]. In Ref. [5], a Solarex MSX60 polycrystalline flat-plat PV module was integrated with a heat collecting plate to form a PV/T module and both the electrical and thermal performances of the module were tested. The module showing its primary-energy saving efficiency exceeds 0.6 in comparison with a pure solar thermal collector. Hourly and monthly electrical and thermal performances of a PV/T array were predicted under Cyprus [6] and Greece [7] climate conditions by using TRNSYS software. Various design methods

were discussed in Ref. [8] to improve the electrical and thermal performances of a flat-plat PV/T hybrid air collector. Effects of water flow rate and packing factor on the energy performance of a façade-integrated PV/T system were predicted and clarified by using a lumped thermal model [9].

The overall performance of a PV/T collector with and without glass cover was also analysed in Ref. [10] and a PV/T collector with glass cover having a better performance was identified. A thermal model of a UK domestic PV/T system was established in Ref. [11], and the packing factor of solar cells and water flow rate was optimized. A full unsteady, 3D numerical thermal model was developed in Ref. [12] to investigate the hourly and monthly electrical and thermal performances of a flat-plat PV/T system, and it was shown that the use of time-averaged climate can lead to an overestimation of the thermal performance.

To improve overall performance of flat-plate PV/T collectors, a PV/T roof-top system with crossed compound parabolic

* Corresponding author. E-mail address: Manosh.Paul@glasgow.ac.uk (M.C. Paul).

http://dx.doi.org/10.1016/j.renene.2017.05.012

0960-1481/© 2017 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Nomenclature		Nt	total nui
a ₁ , a ₂ , a	$_{3}$ coefficients in Eq. (1) respectively related to glass	Nu	Nusselt
	cell parking/active area	N11.	Nusselt
Ac	collecting area of CPV/T module	INUb	be eithe
Acall	area of all the cells in a CPV/T module	Nu	ideal Nu
A_h	cross-sectional area of flow channels in a heat	nu _i	(ΔA)
n	exchanger, m ²	Dr	fluid Pro
b	gap/spacing between two plates in a finned heat	п а	electron
	exchanger, m	ч Ra	Ravleigh
B^{j}	control function of mass flow rate between two	Na	$R_2 = \sigma \beta'$
	segments of water body in a tank in Eq. (12)	Ro.	Revnold
c_1, c_2	empirical constants in Eq. (A2)	RCb Do*	Dourold
C	specific heat capacity of a part of CPV/T module, J/(kg	ке _b	reflector
	K)	Кg	lumpod
$C_{\rm fi}$	water specific heat capacity in the <i>jth</i> segment of water	K _S	shupt ro
JJ	body in a storage tank, $i = 1, 2,, N_t$, $I/(kg K)$	к _{sh}	siluiit ie
CR	concentration ratio of a CCPC module	5	time c
d	ratio of the diffuse irradiance over the global irradiance	ι Τ	Tomport
	on a CPV/T module	T T	ambient
Eg	band-gap energy of PV cell, eV	Т _а Т	the lowe
E _{PV}	instant electrical power generated by PV cells per unit	T cold	water te
-rv	collecting area, W/m ²	1 Ji	evchang
g	gravitational acceleration, $g = 9.81 \text{ m/s}^2$	T _{au}	water to
h_{hf}	forced convection heat transfer coefficients on the wall	1 fij	
DJ	of a heat exchanger next to the back cover, $W/(m^2 K)$	т	exchang
hcon	free convection heat transfer in the cavity of between	I _{fo}	water te
con	the glass cover and the PV cells in a flat PV/T module or		exchang
	in a CCPC cavity, $W/(m^2 K)$	I _{fout}	tempera
h_{ga}	heat transfer coefficient to account for the radiative	-	exchang
84	heat losses of the top glass cover to the sky plus the	T _{hot}	the high
	wind convection heat transfer coefficient, $W/(m^2 K)$	T_j	water te
h_{nb}	radiative heat transfer coefficient of the absorber plate		a storage
P5	to the back cover, $W/(m^2 K)$	T _{sky}	Tempera
$h_{n\sigma}$	radiative heat transfer coefficient plus natural	U	mean flu
P8	convection heat transfer coefficient of the absorber to	v_{wind}	wind sp
	the glass cover, W/(m ² K)	V	output v
h_{nf}	forced convection heat transfer coefficients on the wall	V _{fi}	water vo
(P)	of a heat exchanger next to the absorber, W/(m ² K)	5	storage
hsg	radiative heat transfer coefficient plus natural		
	convection heat transfer coefficient of the PV cells to	Greek s	ymbols
	the glass cover, W/(m ² K)	α	absorpti
h _t	total heat transfer coefficient between the tank wall		absorber
	and the outside air, W/ K	β	tilted an
h _{wind}	convection heat transfer coefficient due to wind, W/	β'	volumet
	(m ² K)	γ	experim
Н	fin height, m	δ	thicknes
Ι	current of PV cells/modules, A	ε	emissivi
Id	diode reversal saturation current, A	η_{opt}	optical e
Iph	photocurrent of PV cells/modules, A	θ	solar bea
k	air/water thermal conductivity, W/(m K)	θ_{eff}	effective
k _{fin}	fin thermal conductivity	ĸ	Boltzma
Ĺ	length of flow channels/fins in a heat exchanger, m	μ	tempera
т	optical gain coefficient of a CCPC module	ν	kinemat
ṁ _f	water mass flow rate through a heat exchanger, kg/s	ρ_{fi}	water de
m _{si}	mass flow rate between two segments of water body in	· ,,	storage
J	a tank in Eq. (12), kg/s	σ	Stefan-B
М	mass of a part of CPV/T module, kg/m^2	τ	thermal
n	diode quality factor of PV cells/modules		

 n_1, n_2 empirical powers in Eq. (A2)

Nt	total number of segments of water body in a storage	
Nu	tank, $N_t = 10$ Nusselt number of natural convection heat transfer	
	coefficient, Nu = $h_{con}b/k$	
Nu _b	Nusselt number of fin channels, $Nu_b = h_{fin}b/k$, h_{fin} will	
	be either h_{pf} or h_{bf} in Eq. (1) or (1a)	
Nu _i	ideal Nusselt number of fin channels, defined in Eq.	
	(A4)	
Pr	fluid Prandtl number, $\Pr = \nu / \tau$	
q	electron charge, 1.60217646 $\times 10^{-19}$ C	
Ra	Rayleigh number of the air between the plates,	
	$Ra = g\beta'(T_{hot} - T_{cold})b^3/\nu\tau$	
Re _b	Reynolds number, $\text{Re}_b = Ub/\nu$	
$\operatorname{Re}_{b}^{*}$	Reynolds number of fin channels, $\operatorname{Re}_{b}^{*} = \operatorname{Re}_{b}(b/L)$	
R_g	reflectance of top glass cover	
R_s	lumped series resistance of PV cells/modules, Ohm	
R _{sh}	shunt resistance of PV cells/modules, Ohm	
S	solar irradiance, W/m ²	
t	time, s	
Т	Temperature, °C	
Ta	ambient temperature, °C	
T_{cold}	the lowest temperature of two plates, K	
T_{fi}	water temperature at the inlet of the first heat	
	exchanger of CPV/T module, °C	
T_{fij}	water temperature at the inlet of the first heat	
	exchanger of CPV/T module in the <i>jth</i> month a year, ^o C	
T_{fo}	water temperature at the outlet of the last heat	
<u>j</u> 0	exchanger of CPV/T module. °C	
T _{fout}	temperature of water at the outlet of the last heat	
jour	exchanger of a CPV/T module. °C	
That	the highest temperature of two plates. K	
T:	water temperature in the <i>i</i> th segment of water body in	
IJ	a storage tank $i = 1.2$ N.	
Т.	Temperature of the sky $^{\circ}$ C	
I SKY	mean fluid velocity in fin channels, m/s	
0	wind speed m/s	
vwind V	output voltage of PV cells/modules V	
v	water volume in the <i>i</i> th corment of water body in a	
v _{fi}	water volume in the j ^m segment of water body in a	
	storage tank, $j = 1, 2, N_t, m^2$	
Crook	sumbols	
GIEEK	absorption coefficient of top glass cover or PV cell or	
u	absorber	
в	tilted angle of a CPV/T module $^{\circ}$	
p B'	volumetric coefficient of expansion of air	
p ~	experimental incidence angle modifier coefficient	
δ	thickness of fin mm	
e	emissivity of a part of CPV/T module	
c n	ontical efficiency of a CCPC module	
'lopt A	colar beam incidence angle on a CDV/T module °	
U A	affective incidence angle of diffuse irradiance °	
^v eff	$Poltzmann constant 1.220055021 + 10^{-23} VV$	
κ	BUITZMANN CONSTANT, 1.38065031 \times 10 ²⁵ J/K	
μ	temperature coefficient of short circuit current, A/K	
ν	kinematic viscosity of fluid, m ⁻ /s	
$ ho_{fj}$	water density in the $j^{\mu\nu}$ segment of water body in a	
	storage tank, $j = 1, 2, N_t, kg/m^3$	
σ	Stetan-Boltzman constant, 5.670367 \times 10 ⁻⁸ kg s ⁻³ K ⁻⁴	
au	thermal diffusivity of air, m ² /s	

Download English Version:

https://daneshyari.com/en/article/4926122

Download Persian Version:

https://daneshyari.com/article/4926122

Daneshyari.com