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Abstract: In this paper, the problem of global dissipativity in the mean square is discussed for stochastic Cohen-
Grossberg neural networks with time delays. By constructing general Lyapunov functions, combining with It𝑜’s formula,
several sufficient conditions for the global dissipativity in the mean square are derived. Moreover, we give out the
estimations of globally attractive sets. Finally, one example is given to show the effectiveness of the proposed criteria.
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1 Introduction

The Cohen-Grossberg neural networks(CGNNs) mod-
el, which was first investigated by Cohen and Grossberg in
1983 [1]. A lot of researchers have attracted considerable
attention on analysis of CGNNs due to its potential appli-
cations, and a great number of important and interesting
results have been obtained on the analysis of CGNNs, in-
cluding stability analysis, state estimation [2, 3, 4, 5, 6]. In
the past few years, the dynamical behaviors of stochastic
neural networks have emerged as a new subject of research
mainly, in real systems, the synaptic transmission is a noisy
process brought on by random fluctuations [6] from the
release of neurotransmitters and other probabilistic caus-
es [7, 8], and it has been realized that a neural network
could be stabilized or destabilized by certain stochastic in-
puts [9, 10]. In particular, the stability criteria for stochastic
neural networks become an attractive research problem of
prime importance [11, 12].

But, in many applications, it is possible there are mul-
tiple equilibriums with some being unstable [13]. When
the neural network is used as associative memory storage
or for pattern recognition, the existence of many equilib-
rium is also necessary. In these applications, the neural
networks are no longer globally stable, and more appropri-
ate notions of stability are needed to deal with multistable
system. In addition, the past decade researchers have wit-
nessed the rapid development of dissipative theory [14, 15]
in system and control areas, because the dissipative theo-
ry gives a framework for the design [16] and analysis of
control systems using an input-output description based on
energy-related considerations, and the dissipative theory
serves as a powerful tool in characterizing important sys-
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tem behaviors, such as stability and passivity, and has close
connections with passivity theorem, bounded [17, 18, 19].
Until now, much effort has been focused on the stability
of stochastic Cohen-Grossberg neural networks(SCGNNs)
[2, 3, 4]. Unfortunately, so far, few authors research the
dissipative analysis problem for the SCGNNs with delays.
Therefore, the main purpose of this paper deal with the dis-
sipativity analysis problem for SCGNNs with time delays.

There are three different definitions about stochastic neu-
ral networks: 1) ultimately bounded in probability, 2) al-
most surely ultimately bounded, 3) 𝑝th moment ultimately
bounded. Here, we just consider the 𝑝th moment ultimate-
ly bounded, especially the ultimately bounded in the mean
square(when 𝑝 = 2). The notion ”global dissipativity in
the mean square” for the SCGNNs is introduced instead
of the general dissipativity notion [20]. Based on the It𝑜’s
formula and some inequality analytic techniques, sufficient
conditions are established to ensure the dissipativity. More-
over, the globally attractive set in the mean square and the
positive invariant in the mean square are given explicitly.

2 Preliminaries

The SCGNNs model with time delays is described by the
following equation group:

⎧⎨
⎩

𝑑𝑥𝑖(𝑡) = {𝛼𝑖(𝑥𝑖(𝑡))[−ℎ𝑖(𝑥𝑖(𝑡)) +
𝑛∑

𝑗=1

𝑎𝑖𝑗𝑓𝑗(𝑥𝑗(𝑡))

+
𝑛∑

𝑗=1

𝑏𝑖𝑗𝑓𝑗(𝑥𝑗(𝑡− 𝜏𝑗)) + 𝑢𝑖]}𝑑𝑡

+
𝑛∑

𝑗=1

𝜎𝑖𝑗(𝑡, 𝑥𝑖(𝑡), 𝑥𝑖(𝑡− 𝜏𝑖))𝑑𝜔𝑗(𝑡),

𝑥𝑖(𝑡) = 𝜑𝑖(𝑡),−𝜏 ≤ 𝑡 ≤ 0,
(1)

where 𝑖 = 1, 2, ⋅ ⋅ ⋅𝑛, 𝑛 ≥ 2 is the number of neurons in
network (1), 𝑥𝑖(𝑡) denotes the state variable associated with
the neuron, and 𝛼𝑖(𝑥𝑖(𝑡)) is an appropriately behaved func-
tion. Function 𝛼𝑖 is continuous. The connection matrix
𝐴 = (𝑎𝑖𝑗)𝑛×𝑛, 𝐵 = (𝑏𝑖𝑗)𝑛×𝑛, activation function 𝑓𝑗(⋅)
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shows us how the neurons respond to each other, 𝑎𝑖𝑗 , 𝑏𝑖𝑗
are connection weights from neuron 𝑖 to neuron 𝑗; 𝑢𝑖 is a
constant external input; 𝜏𝑗 denotes the discrete time delays,
𝜑𝑖(𝑡) ∈ 𝐶([−𝜏, 0];ℝ) is the initial condition for neural net-
works (1).

Throughout this paper, ℝ𝑛 and ℝ𝑛×𝑚 denote, respec-
tively, the 𝑛-dimensional Euclidean space and the set of
𝑛 ×𝑚 matrices. Let 𝑋 > 0 (respectively ,𝑋 ≥ 0) means
that 𝑋 is symmetric positive definite (respectively positive
semi-definite) matrix. 𝐶𝑏

F ([−𝜏, 0] : ℝ𝑛) is the family of al-
l F -measurable bounded 𝐶([−𝜏, 0] : ℝ𝑛)-valued random
variables, and for 𝜏 > 0, 𝐶([−𝜏, 0] : ℝ𝑛) denotes the fam-
ily of continuous function 𝜑 from [−𝜏, 0] to ℝ𝑛, with the
norm ∣∣𝜑∣∣ = 𝑠𝑢𝑝−𝜏≤𝑠≤0∣𝜑(𝑠)∣, where ∣ ⋅ ∣ is the Euclidean
norm in ℝ𝑛. For the convenience of discussion, let

𝑥(𝑡) = (𝑥1(𝑡), 𝑥2(𝑡), ⋅ ⋅ ⋅ , 𝑥𝑛(𝑡))
T,

𝑓(𝑥) = (𝑓1(𝑥1), 𝑓2(𝑥2), ⋅ ⋅ ⋅ , 𝑓𝑛(𝑥𝑛))
T,

𝑈 = (𝑢1, 𝑢2, ⋅ ⋅ ⋅ , 𝑢𝑛)
T,

𝜎(𝑡, 𝑥(𝑡), 𝑥(𝑡− 𝜏)) = (𝜎𝑖𝑗(𝑡, 𝑥𝑖(𝑡), 𝑥𝑖(𝑡− 𝜏𝑖)))𝑛×𝑛.

We rewrite Eq.(1)⎧⎨
⎩

𝑑𝑥(𝑡) = {𝛼(𝑥(𝑡))[−ℎ(𝑥(𝑡)) +𝐴𝑓(𝑥(𝑡)) +𝐵𝑓(𝑥(𝑡
− 𝜏)) + 𝑈 ]}𝑑𝑡+ 𝜎(𝑡, 𝑥(𝑡), 𝑥(𝑡− 𝜏))𝑑𝜔(𝑡),

𝑥(𝑡) = 𝜑(𝑡),−𝜏 ≤ 𝑡 ≤ 0,
(2)

Next, we give definition of three types of activation
functions. The first class of activation functions include
sigmoid functions. It consists of all bounded continuous
function. Formally, we define the set

B := {𝑔𝑖(⋅)∣𝑔𝑖 ∈ 𝐶(𝑅,𝑅), ∃𝑘𝑖 > 0, ∣𝑔𝑖(𝑥𝑖)∣ ≤
𝑘𝑖, ∀𝑥𝑖 ∈ 𝑅, 𝑖 = 1, 2, ⋅ ⋅ ⋅ , 𝑛},

The second class of activation functions is of Lurie type,
which may be unbounded and includes Lipschitz function.
It is defined by

H := {𝑔𝑖(⋅)∣𝑔𝑖 ∈ 𝐶(𝑅,𝑅), ∃𝑙𝑖 > 0, ∣𝑔𝑖(𝑥𝑖)∣ ≤
𝑙𝑖∣𝑥𝑖∣, ∀𝑥𝑖 ∈ 𝑅, 𝑖 = 1, 2, ⋅ ⋅ ⋅ , 𝑛}. Let 𝐿 = max{𝑙𝑖}.

The third class of activation functions is a general type,
which may be neither bounded nor monotonous or differe-
nial. There exist constant 𝑙−𝑖 , and 𝑙+𝑖 such that
G := {𝑓𝑖(⋅)∣𝑙−𝑖 ≤ 𝑓𝑖(𝑥)−𝑓𝑖(𝑦)

𝑥−𝑦 ≤ 𝑙+𝑖 , ∀𝑥, 𝑦 ∈ 𝑅, 𝑥 ∕=
𝑦, 𝑖 = 1, ⋅ ⋅ ⋅ , 𝑛}.
Remark 1. Set G is less conversation than H , since the
constants 𝑙−𝑖 , and 𝑙+𝑖 are allowed to be positive, negative
or zero, that is to say, the activation function is assumed to
be neither monotonic, nor differentiable, nor bounded. In
addition, when 𝑓(0) = 0, and 𝑙𝑖 = 𝑚𝑎𝑥{∣𝑙+𝑖 ∣, ∣𝑙−𝑖 ∣}, we
have ∣𝑓𝑖(𝑥)∣ ≤ 𝑙𝑖∣𝑥∣, so the setH ⊆ G .

Throughout this paper, we suppose the following as-
sumptions hold.
Assumption (H1): For each 𝑖 ∈ {1, 2, ⋅ ⋅ ⋅ , 𝑛}, the amplifi-
cation function 𝛼𝑖(⋅) is positive, bounded, and satisfies 0 <
𝛼𝑖 ≤ 𝛼𝑖(𝑥𝑖(𝑡)) ≤ 𝛼𝑖 < +∞. 𝑖 = 1, 2, ⋅ ⋅ ⋅ , 𝑛.and 𝛼 =
𝑑𝑖𝑎𝑔(𝛼1, 𝛼2, ⋅ ⋅ ⋅ , 𝛼𝑛)

T. 𝛼 = 𝑑𝑖𝑎𝑔(𝛼1, 𝛼2, ⋅ ⋅ ⋅ , 𝛼𝑛)
T.

Assumption (H2): Assume ℎ(0) = 0 and there exist con-
stant 0 < 𝛾𝑖 such that

ℎ𝑖(𝑥)− ℎ𝑖(𝑦)

𝑥− 𝑦
≥ 𝛾𝑖, ∀𝑥, 𝑦 ∈ 𝑅, 𝑥 ∕= 𝑦, 𝑖 = 1, ⋅ ⋅ ⋅ , 𝑛.

Definition 1. SCGNNs (1) is said to be almost surely 𝑝-
th moment ultimately bounded, if there exists a constant
𝐾 > 0, for all initial value 𝜑(𝑡) there exists a time 𝑇 such
that

𝔼∣𝑥(𝑡, 𝑡0, 𝜑(𝑡))∣𝑝 ≤ 𝐾 𝑎.𝑠. 𝑓𝑜𝑟 𝑡 ≥ 𝑡0 + 𝑇.

Especially, when 𝑝 = 2, it is said to be ultimately bounded
in the mean square.
Definition 2. SCGNNs (1) is said to be global dissipativ-
ity in the mean square, if there exists a compact set 𝑆 ⊂
ℝ

𝑛, such that ∀𝜑(𝑡) ∈ 𝐿2
F0

([−𝜏, 0];ℝ), ∃𝑇 > 0, when
𝑡 > 𝑡0 + 𝑇 , 𝔼∣𝑥(𝑡, 𝑡0, 𝜑(𝑡))∣2 ⊆ 𝑆, where 𝑥(𝑡, 𝑡0, 𝜑(𝑡))
denotes the trajectory of Eq.(1) from the initial state 𝜑(𝑡).
In this case, 𝑆 is called a globally attractive set in the mean
square. A set 𝑆 is called a positive invariant in the mean
square, if ∀𝜑(𝑡) ∈ 𝐿2

F0
([−𝜏, 0];ℝ), 𝔼∣𝜑(𝑡)∣2 ⊆ 𝑆 implies

𝔼∣𝑥(𝑡, 𝑡0, 𝜑(𝑡))∣2 ∈ 𝑆 for 𝑡 ≥ 𝑡0.
Lemma 1 [21]. For any 𝜀 > 0, 𝑥 ∈ 𝑅, 𝑦 ∈ 𝑅, the
inequality 2𝑥𝑦 ≤ 𝜀𝑥2 + 𝜀−1𝑦2 holds.
Lemma 2 [5]. Let 𝑎 > 0, 𝑏 > 0, and 𝑝 > 1, 𝑞 > 1,
and 1

𝑝 + 1
𝑞 = 1. Then we have the inequality 𝑎𝑏 <

1
𝑝 (𝑎𝜀)

𝑝 + 1
𝑞 (𝑏𝜀

−1)𝑞, 𝜀 > 0 and the equality holds if and
only if (𝑎𝜀)𝑝 = (𝑏𝜀−1)𝑞 .
Lemma 3. SCGNNs (1) is ultimately bounded in the mean
square, if there are functions 𝑉 (𝑡, 𝑥) ∈ 𝐶2,1(ℝ+×ℝ𝑛;ℝ+)
and three positive constants 𝑐1, 𝑘, 𝜆 satisfying

𝑐1∣𝑥(𝑡)∣2 ≤ 𝑉 (𝑡, 𝑥), L 𝑉 (𝑡, 𝑥) ≤ 𝑘 − 𝜆𝑉 (𝑡, 𝑥), (3)

for all (𝑡, 𝑥) ∈ ℝ+ × ℝ
𝑛.

Proof. For any initial value 𝑥0, let 𝑥 ≜ 𝑥(𝑡, 𝑡0, 𝜑(𝑡)), 𝑥0 ≜
𝜑(𝑡). By It𝑜’s formula, we have
𝑒𝜆(𝑡−𝑡0)𝑉 (𝑡, 𝑥) = 𝑉 (𝑡0, 𝑥0) +

∫ 𝑡

𝑡0
𝑒𝜆(𝑠−𝑡0)[𝜆𝑉 (𝑠, 𝑥) +

L 𝑉 (𝑠, 𝑥)]𝑑𝑠 +
∫ 𝑡

𝑡0
𝑒𝜆(𝑡−𝑡0)𝑉𝑥(𝑠, 𝑥)𝜎(𝑡, 𝑥(𝑡), 𝑥(𝑡 −

𝜏))𝑑𝜔(𝑡).
From (3) and 𝔼

∫ 𝑡

𝑡0
𝑒𝜆(𝑡− 𝑡0)𝑉𝑥(𝑠, 𝑥)𝜎(𝑡, 𝑥(𝑡), 𝑥(𝑡 −

𝜏))𝑑𝜔(𝑡) = 0, we can obtain

𝑒𝜆(𝑡−𝑡0)𝔼𝑉 (𝑡, 𝑥) ≤ 𝑉 (𝑡0, 𝑥0) + 𝔼
∫ 𝑡

𝑡0
𝑒𝜆(𝑠−𝑡0)𝑘𝑑𝑠

≤ 𝑉 (𝑡0, 𝑥0) +
𝑘
𝜆𝔼𝑒

𝜆(𝑡−𝑡0),

then

𝔼∣𝑥∣2 ≤ 1

𝑐1
𝔼𝑉 (𝑡, 𝑥) ≤ 𝑉 (𝑡0, 𝑥0)

𝑐1
𝑒−𝜆(𝑡−𝑡0) +

𝑘

𝜆𝑐1
.

We can see that there exists 𝑇 > 0 such that when 𝑡 ≥
𝑇 + 𝑡0, 𝑒−𝜆(𝑡−𝑡0) convergent to 0, we have

𝔼∣𝑥∣2 < 𝑘

𝜆𝑐1
, 𝑎.𝑠. 𝑓𝑜𝑟 𝑡 ≥ 𝑡0 + 𝑇.

So SCGNNs (1) is ultimately bounded in the mean square.
□
3 Main Result

In this section, several sufficient conditions for the global
dissipativity in the mean square of SCGNNs are estab-
lished.
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