Accepted Manuscript

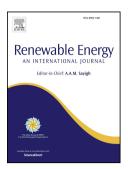
Preparation and kinetics study of biodiesel production from waste cooking oil using new functionalized ionic liquids as catalysts

Zahoor Ullah, M. Azmi Bustam, Zakaria Man, Amir Sada Khan, Nawshad Muhammad, Ariyanti Sarwono

PII: S0960-1481(17)30712-7

DOI: 10.1016/j.renene.2017.07.085

Reference: RENE 9060


To appear in: Renewable Energy

Received Date: 5 December 2016

Revised Date: 18 July 2017 Accepted Date: 20 July 2017

Please cite this article as: Ullah Z, Bustam MA, Man Z, Khan AS, Muhammad N, Sarwono A, Preparation and kinetics study of biodiesel production from waste cooking oil using new functionalized ionic liquids as catalysts, *Renewable Energy* (2017), doi: 10.1016/j.renene.2017.07.085.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

1	Manuscript for-Renewable Energy Journal
2	
3	Preparation and kinetics study of biodiesel production from waste cooking oil using new
4	functionalized ionic liquids as catalysts
5	
6	Zahoor Ullah* ^{ab} , M. Azmi Bustam ^a , Zakaria Man ^a , Amir Sada Khan ^{a,} Nawshad Muhammad ^c ,
7	and Ariyanti Sarwono ^a
8	^a Centre of Research in Ionic Liquid, Department of Chemical Engineering Universiti
9	Teknologi PETRONAS, Tronoh 31750, Malaysia.
10 11	^b Department of Chemistry, The Balochistan University of IT, Engineering and Management Sciences (BUITEMS), Takatu Campus, Quetta-87100, Pakistan
12 13	^c Interdisciplinary Research Centre in Biomedical Materials, COMSATS Institute of Information Technology, Lahore, Pakistan.
14	
15	*Corresponding author: Zahoor Ullah; zahoor7979@yahoo.com
13	Corresponding audior. Zanoor Chan, Zanoor 1919 & yanoo.com
16	
17	Abstract
18	In this work, 1,4-sultone and benzimidazolium-based ionic liquids (ILs) with four different
19	anions were synthesized, and their structures were confirmed by nuclear magnetic resonance
20	(NMR) and elemental analysis (CHNS). The acidity of the synthesized ILs was studied using
21	Hammett acidity function and COSMO-RS. The waste cooking oil was used as a raw
22	material for biodiesel production and their different fatty acids were determined by gas
23	chromatography coupled with flame ionization detector (GC-FID). These four ILs, as
24	catalysts, were screened and comparatively IL 3-methyl-1-(4-sulfo-butyl)-benzimidazolium
25	$trifluoromethan esulfon ate\ [BSMBIM][CF_3SO_3]\ was\ selected\ for\ further\ detailed\ optimization$
26	study. This IL experimental efficiency results supported the Hammett acidity function and
27	COSMO-RS study. The catalyst performance was studied and optimised the different
28	parameters. The catalyst efficiency was studied in one and two-step reactions.
29	[BSMBIM][CF ₃ SO ₃] as a catalyst showed the esterification of waste cooking oil up to
30	78.13% in a single step reaction. Potassium hydroxide was used in the second step to trans-
31	esterify the waste cooking oil up to 94.52%. The catalyst was reused for seven times with
32	high-yield production. The obtained biodiesel was characterised by GC, NMR, FTIR,

Download English Version:

https://daneshyari.com/en/article/4926194

Download Persian Version:

https://daneshyari.com/article/4926194

<u>Daneshyari.com</u>