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First-principles calculation of nonlinear optical responses by Wannier interpolation
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Various nonlinear optical (NLO) responses, like shift current and second harmonic generation (SHG), are
revealed to be closely related to topological quantities involving the Berry connection and Berry curvature.
First-principles prediction of NLO responses is of great importance to fundamental research and device design,
but efficient computational methods are still lacking. The main challenge is that the calculations require a
very dense k-point sampling that is computationally expensive and a proper treatment of the gauge problem
for topological quantities. Here we present a Wannier interpolation method for first-principles calculation of
NLO responses, which overcomes the challenge. This method interpolates physical quantities accurately for
any desired k point with little computational cost and constructs a smooth gauge by the perturbation theory. To
demonstrate the method, we study shift current of monolayer GeS and WS2 as well as SHG of bulk GaAs, getting
good agreements with previous results. We show that the traditional sum rule method converges slowly with
the number of bands, whereas the perturbation way does not. Moreover, our method is easily adapted to build
tight-binding models for the following theoretical investigations. Last but not least, the method is compatible
with most first-principles approaches, including density functional theory and beyond. With these advantages,
Wannier interpolation is a promising method for first-principles studies of NLO phenomena.
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I. INTRODUCTION

Nonlinear optical (NLO) phenomena play an important role
in modern optics and condensed matter physics [1], which
have found great applications in various fields, especially
the laser-related science and technology [1–3]. For instance,
through appropriate frequency conversion, NLO materials are
used to generate new coherent light sources from ultraviolet
to infrared spectral regions with tunable frequencies where
ordinary lasers perform poorly [2,3]. Despite intensive efforts
over half a century, the exploration of novel NLO processes
with promising applications is still under active investigation
[4–11]. Emerging research directions in this field are inspired
by the findings of Berry phase effects and topological
phenomena in solids [12–14]. Importantly, recent theoretical
works revealed that various nonlinear optical responses,
including shift current, second harmonic generation (SHG),
and photovoltaic Hall effect, are closely related to topological
quantities involving the Berry connection and Berry curvature
[7,8]. Moreover, both theory and experiment demonstrated
that topological materials show large NLO conductivity and
strong SHG effect [6,11]. In this context, the exploration
of topological effects in NLO responses becomes important,
which requires more research effort.

In material science, first-principles approaches are indis-
pensable and powerful since they are able to predict material
properties with no need of empirical parameters. There have
been a few attempts to develop first-principles algorithms
for calculating NLO responses [4,9,10,15]. However, these
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approaches are typically computationally very expensive,
because a very dense k-point sampling is required by the calcu-
lation. Moreover, the random phases of Bloch wave functions
from first principles, if not treated properly, would cause the
gauge problem, which is crucial since the calculation involves
the integration of the Berry connection and its derivatives
with respect to k. Further methodological developments are
needed to overcome these challenges. Recently, based on
the computational method of maximally localized Wannier
functions (MLWFs) developed by Mazari et al. [16,17],
the Wannier interpolation method has been developed to
calculate various physical observables, including anomalous
Hall conductivity and orbital magnetization [18–20], for which
the first-order perturbation theory is applied to deal with the
gauge problem. This method features low computational cost
and can be used in conjunction with most first-principles
approaches, including density functional theory (DFT) and
beyond (e.g., hybrid functionals and GW). However, as far
as we know, there has been no theoretical development
for studying NLO responses in the framework of Wannier
interpolation.

In this work, we generalized the Wannier interpolation
method to explore properties of NLO responses by first-
principles calculation. This method provides accurate inter-
polations of physical quantities for any desired k point with
little computational cost and constructs a smooth gauge by
the second-order perturbation theory. As example studies,
we calculated shift current of monolayer GeS and WS2

as well as SHG effect of bulk GaAs, obtaining results
in good agreement with the published ones [9,21]. Also
we demonstrated that the perturbation algorithm is more
advantageous over the traditional sum rule method [10,15]
in calculating the derivative of the Berry connection, which
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does not suffer from slow convergence with the number of
bands. Moreover, we showed that Wannier interpolation is
easily adapted to tight-binding models that facilitate following
theoretical investigations. These advantages make Wannier
interpolation a promising method for first-principles studies
of NLO phenomena.

This article is organized as follows. In Sec. II, the theoretical
expression of shift current and SHG effect will be presented
and their symmetry properties will be analyzed. The Wannier
interpolation formalism of NLO responses will be discussed
in Sec. III. In Sec. IV, the method will be applied to compute
NLO responses of different materials. Finally, discussions and
conclusions will be provided in Sec. IV.

II. DEFINITION AND BACKGROUND

A. Shift current

When an electron is pumped by light from valence band
to conduction band, it may undergo a shift in position, which
results in an electric current. Under linearly polarized light
with electric field E at frequency ω, this shift current density
J is a second-order response [10,15,22]:

J a = σabb(ω)Eb(ω)Eb(−ω), (1)

where a, b, c are Cartesian indices and σabb is given by

σabb(ω) = 2gsπe3

h̄2

∫
d3k

(2π )3

∑
n,m

fnmIabb
nm δ(ωnm − ω), (2)

where gs is the spin degeneracy, h̄ωnm = En − Em, En and
Em are the energy eigenvalues of bands n and m for a
given wave vector k (k is omitted for simplicity), and fnm =
f (En) − f (Em) is the difference of Fermi-Dirac occupation.
The integrand I abb

nm is

I abb
nm = Im

[
rb
mnr

b
nm;a

]
, (3)

where rb
nm is defined to be the Berry connection Ab

nm ≡
i〈un|∂kb

um〉 when n �= m or zero when n = m, and rb
nm;a =

∂ka
rb
nm − i(Aa

nn − Aa
mm)rb

nm. We will omit the k in the derivative
and write |∂kb

um〉 as |∂bum〉 hereafter.
Equation (2) can be reformulated into a more transparent

form [4,15]:

σabb(ω) = 2gsπe3

h̄2

∫
d3k

(2π )3

∑
n,m

fmnr
b
nmrb

mnR
a,b
mn δ(ωnm − ω),

(4)
where Ra,b

mn ≡ ∂aφ
b
mn − Aa

mm + Aa
nn and φb

mn is the phase of
rb
mn = |rb

mn|eiφb
mn . Ra,b

mn has the unit of length and can be
physically interpreted as position change of a wave packet
during its pumping from band m to band n, which is usually
referred to as shift vector [23]. On the other hand, the product
rb
nmrb

mnδ(ωnm − ω) = |rb
nm|2δ(ωnm − ω) can be interpreted as

transition rate from band m to band n according to the Fermi
golden rule. Therefore, shift current, according to this formula,
is expressed as shift vector multiplied by transition rate.

Sometimes rb
nm is approximately referred to as the matrix

of position operator r̂. However, one should notice that rb
nm

cannot be viewed as the matrix of a physical observable,
since the expectation value of the position operator is not
well defined for Bloch wave functions. Nevertheless, rb

nm

does capture some features of r̂. For example, they share the
same transformation rules under time reversal T̂ and space
inversion Î . It is well known that T̂ r̂T̂ −1 = r̂ and Î r̂Î−1 =
−r̂. Similarly, rnm(k) = r∗

nm(−k) if time reversal symmetry
exists, and rnm(k) = −rnm(−k) if inversion symmetry exists.
Importantly, shift current vanishes in the presence of inversion
symmetry, since Î takes Eb to −Eb and J a to −J a in
Eq. (1), which thus requires σabb = −σabb = 0. Therefore,
shift current only exists in materials with broken inversion
symmetry.

B. Second harmonic generation effect

SHG effect of an input light with electric field E at
frequency ω is described as

P c(2ω) = ε0χ
abc(ω)Eb(ω)Ec(ω),

where P(2ω) is the induced second-harmonic dipole per unit
volume, ε0 is the vacuum permittivity, χabc is the second-order
susceptibility, and a, b, c are Cartesian indices. Following
the same symmetry analysis as for shift current, SHG effect
vanishes if the system respects inversion symmetry. For a
material with inversion symmetry, the bulk introduces no SHG
effect, and the observed SHG signals all come from surfaces or
interfaces where inversion symmetry gets broken. Therefore,
SHG effect has been widely applied to characterize material
surfaces and interfaces.

The expression of χabc is rather lengthy [24], which is
presented in Appendix A. Importantly, χabc can also be
expressed by rb

nm and rb
nm;a , similar to σabb. Thus, to calculate

both σabb of shift current and χabc of SHG effect, we
need to compute rb

nm and rb
nm;a , preferably by first-principles

calculations with no need for empirical parameters.

III. METHODS

A. Gauge problem

Since Bloch wave functions are only determined up to
phase factors, one should be careful when calculating their
derivatives with respect to the wave vector k, for instance, in
the calculations of rb

nm and rb
nm;a . The finite difference method,

which only applies to continuous functions, would usually fail,
considering that phases of Bloch wave functions obtained from
first-principles calculations are typically distributed randomly
in the Brillouin zone (BZ). Phase factors of Bloch wave
functions are sometimes referred to as the gauge. Thus, this
problem related to phase factors is called the gauge problem,
which must be treated properly in first-principles calculations
of nonlinear optical responses. To the best of our knowledge,
there are currently two computational methods developed to
avoid the gauge problem. To calculate rb

nm and rb
nm;a , one

method uses a gauge invariant discrete expression; the other
uses a momentum expression, as shown in the following.

B. Gauge invariant discrete expression

Ultimately, any physical observables should never depend
on the choice of phases of Bloch wave functions. This property
is called gauge invariant. The first computational method of
overcoming the gauge problem is to use a carefully designed
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