Accepted Manuscript

Thermohydraulic performance analysis of an arc shape wire roughened solar air heater

Renewable Energy
AN INTERNATIONAL JOURNAL
Editor-in-Chief: Soleris Kalogirou

Mukesh Kumar Sahu, Radha Krishna Prasad

PII: S0960-1481(17)30161-1

DOI: 10.1016/j.renene.2017.02.075

Reference: RENE 8582

To appear in: Renewable Energy

Received Date: 30 September 2016

Revised Date: 14 January 2017

Accepted Date: 24 February 2017

Please cite this article as: Mukesh Kumar Sahu, Radha Krishna Prasad, Thermohydraulic performance analysis of an arc shape wire roughened solar air heater, *Renewable Energy* (2017), doi: 10.1016/j.renene.2017.02.075

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Highlights

- \triangleright A comprehensive theoretical analysis to evaluate thermal (η_{th}) and thermohydraulic (η_{eff}) efficiency of arc shaped roughened solar air heater has been done.
- ho η_{th} and η_{eff} were found to be 79.84 % and 75.24 % respectively at rib height-to-duct hydraulic diameter ratio e/D = 0.0422 and flow-attack-angle $\alpha/90$ = 0.3333 and Rib pitch-to-height ratio P/e = 10.
- > The maximum values of η_{eff} with temperature rise parameter $\Delta T/I$ have been optimized.
- ➤ Thermal Efficiency Improvement Factor (TEIF) of various roughness geometries has been compared.

Download English Version:

https://daneshyari.com/en/article/4926539

Download Persian Version:

https://daneshyari.com/article/4926539

<u>Daneshyari.com</u>