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a b s t r a c t

It is surprising to observe that China has led the wind turbine price reductions across the world. To
explain turbine price changes, the theoretical mechanism applied for technologically advanced countries
is insufficient to demonstrate the performance of turbine manufacturing from technology adoption to
indigenous innovation and during wind curtailment shocks. The paper constructs a multi-factor learning
model in the framework of the Cobb-Douglas function to examine the distinctive China turbine price
evolution in 1998e2012. The core factors: the learning-by-doing, learning-by-researching, economies of
scale in turbine size and quantity and input-price effects of labor, capital, steel and fiberglass/resin, are
recognized and qualified in accordance with industrial and market characteristics. The results show that
the learning effects are the most important factors associated with the larger turbine price reductions in
China and most likely weakened by the price effects of inputs. The scale effects are important to un-
derstand the innovative performance uncaptured by learning effects and negative price responses to
production adjustments during curtailment shocks. The labor cost is statistically insignificant but
geographically important. To strengthen the price and manufacturing competitiveness of turbines in
China, policies should be adjusted to maximize benefits from these effects and minimize negative im-
pacts of wind curtailment.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

As the largest single cost component of a wind system, the
swinging price trend of wind turbines has aroused great academic
interests in the literature. It is supposed that technological learning
effects contributing as major forces to turbine price reductions are
diminishing in the long-run and tend to be offset by upward
changes of input price and module size [1]. China, as a newly-
emerging wind market, is distinctive for the trend of much
sharper price reductions in 1998e2013, slight price fluctuations in
2003e2007 and unexpected price rebound in 2012e2013. The
literature we reviewed has not given a satisfactory explanation on
these major price movements.

With the production localization and mass deployment of wind
turbines over 1998e2013, China had a 65% decrease in the real
turbine price, a decrease larger than any other countries for the
same time span. From 2007, China has been the lowest wind tur-
bine price holder in the world market. In this period, China locally-
made turbines for commercial applications increased from zero to
15 GM annually and accumulated close to that of EU-15 or 29% of
theworldmarket. The local plants grow from small-size assembling
ones to ten times larger than foreign counterparts in China and they
are competing on the independently developed superpower tur-
bine models. With such aggressive production expansions and
technology progress in China turbine manufacturing, the theoretic
grounds to explain price changes in turbine technology innovators
are not appropriately enough for those from technology adopters to
innovators.

The global-wide turbine price rise is in the input price climbing
period of 2002e2008, but not all input markets are globally inte-
grated. China is one of few exceptions to large price movements,
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with only 5% price volatility in comparison with 50% plus in
traditional technology leading countries. On the other hand, the
unexpected China turbine price rebound in 2012e2013 is followed
after the outbreak of nationwide wind curtailment in 2010 which is
much more significant and persistent than in other countries. The
power system is unprepared to tackle the flexible operations for
additional large-scale wind power and rebalance the power gen-
eration across areas. It is further incapable to properly integrate
wind, of which the majority has been built and will continue to be
centered in distant, resource-rich north areas where the peaking
capacity and transmission capacity are highly insufficient and time-
consuming to be expanded. The rate that wind is curtailed even
exceeds 60% in some farms. In response, China annual installed and
produced turbine capacity declined for the first time in 2011e2012
and the price appeared to change against the curtailment rate.
These facts imply that the turbine price driving forces are more
complicated in China and the empirical basis needs to be modified.

This paper intends to discuss these unique features of wind
turbine price evolution in China and provide empirical evidence to
evaluate them. The exploration of this issue helps to clarify the
origin of China turbine price changes, explain the development of
turbine technology and understand the importance of coordinated
developments between turbine sector and power market. With the
improved understanding of China turbine price evolution, it is also
constructive for the industry and government to make strategic
planning or policy adjustments to improve the competitiveness of
turbine manufacturing in China.

The complication of this work includes the construction of
theoretical and empirical models, identification of price driving
forces and tests of factor effects. A modified multi-factor learning
curve (MFLC) is built in the framework of the Cobb-Douglas (CD)
function, of which the theoretical foundation goes beyond simple
learning effect and for the improved technology performance with
optimal resource allocation. A broader set of turbine price factors is
identified in accordance with industrial and China market charac-
teristics over different time periods, which is conducted to mini-
mize technological or geographic mismatch in wind turbine
manufacturing. The empirical results are compared between
models and across countries to argue for the modeling fit and
geographic distinctions in China wind turbine price evolution. To
support our researchwork, the following review is carefully done to
clarify the approaches and controversies in turbine price studies.

1.1. The type and construction of learning models

The learning curve is the most widely adopted method to
measure the effects of technology learning on the costs of wind
technology [2]. The key publications are distinctive in terms of
approaches to top-down or bottom-up interpreting the cost or
price changes. The former approach is formulated on the empirical
basis and the latter is constructed in the theoretic framework of
economic or engineering rules.

The basic one-factor learning curve (OFLC) and two-factor
learning curve (TFLC) take production experience and innovative
learning as sources for the improvement of technology perfor-
mance [3]. The effects of learning-by-doing (LBD) and learning-by-
researching (LBR) are applied with an aggregate outlook to the
problem of cost reductions inwind turbines. They can be expressed
as follows:

Ct ¼ C0

�
CQt

CQ0

��b

(1)

Ct ¼ C0

�
CQt

CQ0

��b

KS�d
t (2)

LBD ¼ 1� 2�b (3)

where Ct and C0 are the turbine cost at time t and zero, and CQt and
CQ0 are the corresponding cumulative capacity. KSt is the knowl-
edge stock at time t, and b and d are the indices of LBD and LBR.
Equation (1) presents the LBD effect through cumulative pro-
ductions. Equation (2) integrates the LBR effect through innovative
activities. And equation (3) is used to calculate turbine cost re-
ductions with the doubling of cumulative production. The basic
learning models are criticized for the exclusion of non-learning
forces and the omission of possible discontinuities in the curve
when the price is adopted as the proxy variable of cost. For the price
learning curve, it is usually regarded that for more than five years,
the price margin will not change much under market competition
and the estimation is valid for the price and also for the cost trend
[4].

Since basic learning models can’t explain turbine price fluctua-
tions in 2002e2008, the MFLC modeled with bottom-up assess-
ments is inspired to take cost analysis along the production process
[5,6]:

D ¼
X

DCkf ;t (4)

where DCt and DCkf,t are the total and disaggregated cost changes at
time t. Cost factors such as labor and material price, manufacturer
profitability and warranty provisions are statistically examined in
the literature. From the disaggregated perspective, the MFLC can be
better derived in the economic framework of cost minimization in
which inputs are fully utilized to maximize outputs. The function is
set for wind power in Qiu and Anadon [7]:
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where Ct is the wind power cost, Z is a constant, pi is the price of
inputs and CVj represents other spatial control variables. The price
function is derived from the cost. Although the modeling is better
grounded, the function and result cannot be directly applied to
wind turbines. The mismatch between inputs and outputs of
different wind systems will lead to the biased or even invalid
conclusions [8].

An alternative to MFLC is a component-based assessment under
the engineering framework [2]. The cost function is the
engineering-based scale model (or combined with the learning
curve). The scale effect at the level of turbine models is specifically
introduced into the function. It is expressed in Coulomb and
Neuhoff [9] as follows:

ctðD;HÞ ¼ CQ�b
t
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where cci,t is the unit cost of turbine component i at time t, D, Dref, H
and m are the key technical scaling descriptors of rotor diameter,
reference diameter, tower height and cost proportion varying with
the mass. The cost of components differs in the forms of expo-
nential functions (ei). The empirical results provide evidence for the
existence of diseconomies of scale in the turbine models above
600 kW [9]. The calibration of the modeled cost to the market
price-adjusted cost is proposed and applied in Fingersh et al. [20]
and Mone et al. [21]. But the effect of productive scaling is still
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