Accepted Manuscript

The prospects for Small Hydropower in Colombia

Jessica Arias-Gaviria, Bob van der Zwaan, Tom Kober, Santiago Arango Aramburo

PII: \$0960-1481(17)30064-2

DOI: 10.1016/j.renene.2017.01.054


Reference: RENE 8493

To appear in: Renewable Energy

Received Date: 12 January 2016
Revised Date: 21 January 2017
Accepted Date: 23 January 2017

Please cite this article as: Arias-Gaviria J, van der Zwaan B, Kober T, Arango Aramburo S, The prospects for Small Hydropower in Colombia, *Renewable Energy* (2017), doi: 10.1016/j.renene.2017.01.054.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

The	Prospects	for	Small	Hydro	power in	ı Colombia

3 4

1 2

Jessica Arias-Gaviria^{1,*}, Bob van der Zwaan^{2,3,4}, Tom Kober^{5,2}, Santiago Arango Aramburo¹

5 6

7

8

9

¹Universidad Nacional de Colombia, Decision Sciences Group, Facultad de Minas, Medellin, Colombia ² Energy research Centre of the Netherlands, Policy Studies, Amsterdam, The Netherlands ³ Johns Hopkins University, School of Advanced International Studies, Bologna, Italy

⁵ Paul Scherrer Institut, Laboratory for Energy Systems Analysis, Energy Economics Group, Villigen, Switzerland

⁴ University of Amsterdam, Faculty of Science, Amsterdam, The Netherlands

10 11

* Corresponding author: Tel: +57 3164441317, jariasg@unal.edu.co

12

13 Third Resubmitted Version 14 NOT FOR QUOTATION OR DISTRIBUTION 15 January 2017

16 17

18 19

20

21

22

23

24

25

26 27

28

29

30

31

Abstract

Small hydropower (SHP) has existed for more than a century in Colombia, and is gaining reserved interest as an option to mitigating climate change. In this paper we investigate the prospects for SHP in Colombia based on an analysis of economies-of-scale and learning-by-doing effects. We created an inventory of SHP plants realized in Colombia between 1900 and 2013, and focused on grid-connected SHP stations only. In the economies-of-scale part of our analysis we considered all SHP plants with a capacity lower than 20 MW. However, we exclude plants with a capacity lower than 0.1 MW from the learning-by-doing analysis, given that their cumulative capacity is still too small for a meaningful learning curve estimation. We used an Ordinary Least Squares analysis for estimating the parameters of our economies-of-scale and learning-by-doing models, and observed that infrastructure costs and total costs are mainly driven by economies-of-scale, while equipment costs can also be influenced by learning-by-doing. Our findings suggest that equipment costs for SHP plants with capacities between 0.1 and 20 MW have declined at an average learning rate of 21%.-We conclude that both the public and private sectors can benefit from scaling effects for hydropower plants.

32 33 34

Keywords: hydropower, climate policy, investment costs, learning-by-doing, economies-of-scale, Colombia

35 36

Download English Version:

https://daneshyari.com/en/article/4926708

Download Persian Version:

https://daneshyari.com/article/4926708

<u>Daneshyari.com</u>