Accepted Manuscript

The stability of the radiative regime does influence the daily performance of solar air heaters

Viorel Badescu, Qahtan A. Abed, Adrian Ciocanea, Iuliana Soriga

PII: S0960-1481(17)30089-7

DOI: 10.1016/j.renene.2017.02.011

Reference: RENE 8518

To appear in: Renewable Energy

Received Date: 5 July 2016

Revised Date: 28 January 2017

Accepted Date: 6 February 2017

Please cite this article as: Badescu V, Abed QA, Ciocanea A, Soriga I, The stability of the radiative regime does influence the daily performance of solar air heaters, *Renewable Energy* (2017), doi: 10.1016/j.renene.2017.02.011.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

1 2	The stability of the radiative regime does influence the daily performance of solar air heaters
3	does initiatie dury performance of solar an neaters
4 5	Viorel Badescu ^{(1)*} , Qahtan A. Abed ⁽²⁾ , Adrian Ciocanea ⁽³⁾ , Iuliana Soriga ⁽¹⁾
6	⁽¹⁾ Candida Oancea Institute, Polytechnic University of Bucharest, Spl. Independentei
7	313, Bucharest 060042, Romania.
8	Phone: +40.21.402.9339; email: badescu@theta.termo.pub.ro
9	⁽²⁾ Technical Engineering College of Najaf, Al-furat Al-awsat Technical University,
10	Najaf, Iraq; email: qahtan77@yahoo.com
11	⁽³⁾ Department of Hydraulic Machinery and Environmental Engineering, Polytechnic
12	University of Bucharest, Spl. Independentei 313, Bucharest 060042, Romania;
13	email: adrian.ciocanea@yahoo.com
14	
15 16	(*) corresponding author
17	Abstract
18 19	The dependence of the daily photothermal conversion performance on the stability of the radiative regime
20	has been rarely treated in literature and only for systems based on water collectors. The objective here is to
21	estimate whether the daily performance of solar air collectors is dependent on the radiative regime
22	characteristics other than the level of daily solar irradiation. Results are obtained by comparing the
23	performance of two solar air collectors whose design is almost similar but one has a porous absorber and
24	the other has a U-corrugated absorber. First, the daily performance of the collectors are analyzed
25	experimentally during clear sky days in Bucharest (Romania, South Eastern Europe). The instantaneous
26	performance of the collector based on porous absorber is generally higher than that of the collector based
27	on U-corrugated absorber. Second, dynamic models are developed and validated against measurements
28	obtained in Bucharest. Two new performance indicators specific to time dependent operation are defined. It
29	is shown that these indicators equal each other at steady state but in transitory operation they have different
30	values. Simulations are performed for collectors operation under the climate of Timisoara (Romania). Eight
31	days, covering all four seasons and belonging to different relative sunshine classes and different radiative
32	regime stability levels are selected. At daily level, the collector based on porous absorber is more effective
33	than the collector based on U-corrugated absorber. When the instantaneous performance is considered, the

Download English Version:

https://daneshyari.com/en/article/4926725

Download Persian Version:

https://daneshyari.com/article/4926725

Daneshyari.com