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a b s t r a c t

This paper focuses on real-time estimation of Li-ion State of Charge (SoC). A first-principles model
validated by experimental data from literature is chosen to mimic a real Li-ion cell. Its impedance re-
sponses at different SoCs are studied by a simulated electrochemical impedance spectroscopy (EIS). An
equivalent circuit model is developed for estimator design in which the parameters (including lumped
series resistances R1, lumped interfacial resistances R2 and time constant t) are derived from system
identification and compared with the EIS results. The estimator is designed using extended Kalman
filtering (EKF) and is implemented in the first-principles model. It is demonstrated by computer simu-
lation that the SoC during charge/discharge cycles can be estimated with a relative error <3%. The ac-
curacy of SoC tracking is improved if it is jointly estimated along with either R1 or R2 given that these
model parameters vary with SoC as revealed by EIS.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Rechargeable Li-ion batteries find a wide variety of applications
in satellites, electrical vehicles, portable electronics and stationary
power storage. In the renewable energy sector, Li-ion batteries may
be used in conjunction of photovoltaics [13,28], thermal solar po-
wer [22], wind power [27,12], and geothermal applications [14]. It is
envisioned that Li-ion batteries will be the promising means of
energy storage in off-grid renewable energy given its longer life-
span than other competing technologies (see paper [3] and refer-
ences therein for detailed discussions).

A Li-ion battery energy storage system may be composed of
numerous cells connected in series and/or in parallel configurations
to meet specifications of voltage and power. Because of variations
in cell manufacturing, a pack consisting of multiple cells is sus-
ceptible to State of Charge (SoC) imbalance during operation. A
weaker cell becomes depleted faster during discharge while a
stronger cell reaches full charge more quickly during charge. To
enhance usable battery capacity and to mitigate cell degradation
due to over-charge or over-discharge, cell-wise monitoring and
control of SoC is desirable in operating high-voltage, high-power Li-
ion battery packs.

While techniques exist for direct measurement of the SoC (see
review paper [17] and references therein), they have drawbacks
limiting their uses in real-time applications. This motivates

research and development of model-based state estimation tech-
niques utilizing current and voltage measurements that are readily
available during battery operation. Because the Li-ion battery is a
nonlinear electrochemical system, nonlinear state estimation
techniques such as extended Kalman filtering (EKF) [18,19] and
unscented Kalman filtering (UKF) [26,23] could be used. Cell-wise
management of a high-power, high-voltage Li-ion pack based on
EKF has been successfully demonstrated over a long testing period
[24]. The real-time estimator usually employs an equivalent circuit
model, in which the SoC is one of the internal states. Calibration of
parameters in the equivalent circuit model may be done by mini-
mizing difference in voltages measured experimentally and the
model predicted values [9].

The mathematical model plays an important role in EKF-based
battery estimator design because it is used in the prediction step
of the algorithm to calculate battery state. The equivalent circuit
model is a type of lumped parameter model that uses classical
electrical elements to capture the main input-output dynamics of
Li-ion during charging/discharging cycles [29,10]. It can be easily
formulated in the state-space form for model-based estimation and
control. To shed an in-depth fundamental understanding of the
electrochemical transport phenomena in a Li-ion cell, however,
nonlinear first-principles models may be required [5,20]. These
models are governed by partial differential equations (PDEs) whose
parameters may be tuned to match impedance responses of a real
Li-ion cell over a wide spectrum of frequencies [2]. If distributed
sensors and actuators are available, model reduction and control
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design techniques of PDE systems [1] may be applied to the Li-ion
cell.

The focus of this paper is on the input-output dynamics of Li-
ion. A detailed PDE-based first-principles model from literature
that is validated by experimental data [5] is chosen to mimic a real
Li-ion cell. An electrochemical impedance spectroscopy (EIS) study
is conducted to obtain impedance responses of the cell over a wide
spectrum of frequencies. The EIS helps the understanding of cell
impedance which significantly affects cycling performance.
Furthermore, it reveals that an equivalent circuit model with con-
stant parameters may not be sufficient to capture Li-ion impedance
at all SoCs. This motivates joint estimation of SoC with a time-
varying battery parameter in real-time estimator design. The esti-
mator is developed utilizing EKF and an equivalent circuit model
whose parameters are derived from EIS and battery cycling data.
Finally, the joint state and parameter estimator is compared with
the state estimator (assuming constant model parameters during
battery charge/discharge cycles) using the true SoC value as a
baseline.

2. Approach

2.1. First-principles Li-ion model

A lithium-ion cell consists of five regions: a negative electrode
current collector, a porous composite negative insertion electrode,
a porous separator, a porous composite positive insertion electrode
and a positive electrode current collector. In this work, a one-
dimensional model is chosen to simulate a cross section of the
battery while the edge effect of hight and length is neglected. The
model takes into account charge and material balances in the
porous electrodes and separator as well as the coupling at the
electrode-electrolyte interface. Porous electrode theory is
employed so that the medium is treated as a superposition of active
material, electrolyte, and filler with known volume fractions [15].
Specifically, the time-dependent PDEs are described as follows:

(i) Charge conservation in homogeneous solid:

V$ð�sV4sÞ ¼ �jLi (1)

(ii) Mass conservation in homogeneous solid:

vcs
vt

¼ V$ðDsVcsÞ (2)

(iii) Mass conservation in homogeneous electrolyte:

εe
vce
vt

þ V$ð�DeVceÞ ¼
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F

!
jLi (3)

(iv) Charge conservation in homogeneous electrolyte:

V$ðkV4e þ kDV ln ceÞ ¼ �jLi (4)

(v) Lithium-ionmovement between solid and electrolyte phases
accounting for Butler-Volmer kinetics and double layer
capacitance:

jLi ¼ asi0

�
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Fh
2RT

�
� exp

�
� Fh
2RT

��
þ asCdl

vð4s � 4eÞ
vt

(5)

In Eqs. (1)e(5), s is the solid phase conductivity, 4s is the po-
tential in the solid phase, 4e is the potential in the electrolyte phase,
jLi is the reaction current resulting in production or consumption of
Li, t is the time, c is the concentration of lithium ion, D is the
diffusion coefficient, F is the Faraday constant, ε is volume fraction,
t0þ is the transference number, k is the electrolyte phase conduc-
tivity, kD is the diffusional conductivity, i0 is the exchange current
density, h is the over-potential, a is the specific area and Cdl is the
double-layer capacitance. Subscript s represents solid phase and e
electrolyte phase, respectively. The Bruggeman relationships are
adopted to account for the effect of tortuosity on electrolyte
diffusion and ionic conductivity in the above equations. Both
cathodic and anodic transfer coefficients are 0.5 to evaluate i0 using
the electrode kinetic equation [5].

Model parameters used in this work are based on a LixC6|
LiyMn2O4 cell studied by Doyle et al. [5]. The double layer capaci-
tance Cdl is assume to be 0.1 F/m2 [4] and as ¼ 3εs/rp, where rp is the
radius of particle in the electrode. The coupled Eqs. (1)e(5) are
solved simultaneously using COMSOL Multiphysics, a finite
element based numerical solver. The above mathematical model
may be enhanced by including side reactions and heat transfer,
which will be considered in future work.

2.2. Frequency responses of cell impedance

EIS is a powerful tool to investigate the dynamics of Li-ion cell
[2,4,11]. It applies a small excitation voltage or current wave to the
electrode and records the resulting response in current or voltage.
Excitations at multiple frequencies and various SOCs allow the
investigation of several electrochemical transport phenomena
occurring at different time scales which facilitates the development
of equivalent circuit models for estimator design.

In the EIS simulations, a fully charged cell is first discharged to a
specified SoC and then left disconnected for 60 min to allow suf-
ficient relaxation. Subsequently, a small single frequency stimulus
current is applied to the positive electrode to observe the response
in voltage. A frequency sweep for f ¼ 10�3 � 105 Hz (uniformly
distributed in log space) is done to collect 41 sets of data. Thewhole
process is repeated for 11 different SOCs ranging from 0 to 1.

After collecting the current and voltage data, fast Fourier
transforms (FFTs) are performed to compute the magnitudes and
phase angles of the current and voltage in the transformed domain.
For a vector x ¼ [x0 x1… xN�1] with length N, its fast Fourier
transform, X ¼ [X0X1…XN�1], is calculated as follows:

Xk ¼
XN�1

n¼0

xne�jð2pkn=NÞ; k ¼ 0;1;…;N � 1 (6)

Given the fact that a single frequency sine wave is used as the
stimulus current in each EIS simulation, the voltage output would
also be a sine wave with a single frequency assuming quasi-linear
response. The magnitude and phase angle of current or voltage
are computed as the absolute value and the phase angle of the
largest element in the vector of FFT. The complex impedance is then
calculated as the transformed voltage divided by the transformed
current. The calculation is done for 41 frequencies and 11 SoCs to
generate 41 � 11 data points of cell impedance.

2.3. Equivalent circuit model and parameter identification

There are various forms of equivalent circuits available in liter-
ature (see, for example [16,9]). It is acknowledged that the equiv-
alent circuit model shown in Fig. 1 provides a reasonable
description of battery dynamics during charge/discharge cycles
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