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a b s t r a c t

A k-nearest neighbor (kNN) ensemble model has been developed to generate Probability Density
Function (PDF) forecasts for intra-hour Direct Normal Irradiance (DNI). This probabilistic forecasting
model, which uses diffuse irradiance measurements and cloud cover information as exogenous feature
inputs, adaptively provides arbitrary PDF forecasts for different weather conditions. The proposed
models have been quantitatively evaluated using data from different locations characterized by different
climates (continental, coastal, and island). The performance of the forecasts is quantified using metrics
such as Prediction Interval Coverage Probability (PICP), Prediction Interval Normalized Averaged Width
(PINAW), Brier Skill Score (BSS), and the Continuous Ranked Probability Score (CRPS), and other standard
error metrics. A persistence ensemble probabilistic forecasting model and a Gaussian probabilistic
forecasting model are employed to benchmark the performance of the proposed kNN ensemble model.
The results show that the proposed model significantly outperform both reference models in terms of all
evaluation metrics for all locations when the forecast horizon is greater than 5-min. In addition, the
proposed model shows superior performance in predicting DNI ramps.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Global market penetration of centralized solar productions,
particularly the Concentrated Solar Power (CSP) plants, has been
growing rapidly due to the increasing demands for clean and
carbon-free energy [1,2]. Direct Normal Irradiance (DNI), which is
the sole energy source for CSP generations, is sensitive to the cir-
cumsolar cloud cover and therefore is highly variable at the ground
level [3]. As a result, the variability of ground-level CSP productions
imposes serious challenges to electrical transmission grids, which
need to be balanced in real time but have limited storage capacity
[4,5]. Quantitatively forecast of DNI provides important informa-
tion for inverter control, plant management, unit commitment, and
real-time dispatch operations [6,7]. Therefore, solar forecasting
models are widely recognized as key components of a smart grid to
mitigate the instabilities of centralized solar power generation
[4,8e10].

Many effective solar forecasting models have been developed
for different temporal horizons based on data-driven, physical, or
hybrid methods [8,11e25]. Most of these available solar forecasting

models generate deterministic point predictions without quanti-
fied uncertainty [26,27]. Point predictions are associated with
inherent and irreducible forecasting errors because of the chaotic
atmospheric processes, regardless of the mechanism of the model
or the methods of data processing [28e30]:

IðtÞ ¼ f ðtÞ þ εðtÞ; (1)

where I(t) represents the measured value at time t, f(t) represents
the optimal prediction, and εðtÞ represents the white noise.
Therefore, probabilistic forecasts, which provide the Probability
Density Function (PDF) of forecast variables, are recommended for
real-world forecasting applications in the literature
[26,28,29,31e33].

Probabilistic solar/solar power forecasts have been proposed in
literature based on analog ensemble of Numerical Weather Pre-
diction (NWP) models [34e38]. The analog ensemble is usually
defined as a set of historical instances from a NWP model for a
given location and forecast horizon. These historical instances have
similar features as the current instance from the same NWPmodel.
The actual observations of the historical instances are used to es-
timate the PDF of the future state for various weather conditions.
For hourly forecast, these proposed analog ensemble models have
shown superior performance over reference models, such as the
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Persistence Ensemble (PeEn) model [37] or the quantile regression
model [38], when validated using months of historical data
collected from multiple locations, particularly during hours of low
solar elevation [35e38]. However, the temporal and spatial reso-
lution of NWP-based method are not appropriate for the intra-hour
forecasts of DNI [3,4].

A few intra-hour forecasting models that provide Prediction
Intervals (PIs) for DNI are available in the literature [24,33,39,40].
Nevertheless, these available models either provide empirical PIs
without underlying PDFs [33,41] or construct PIs based on the
assumption that forecast errors are Gaussian-distributed
[26,28,29]. The PDF of DNI forecast errors may not follow a
Gaussian and other common distributions. For example, Gaussian,
Logistic, and Kernel functions are used to fit the distributions of the
persistence DNI forecast errors in Fig. 1. The bandwidth of the
distribution fittings are selected using the exhaustive method [33].
The persistence errors are obtained by evaluating a persistence
model (discussed in Section 3.4) using the training data collected in
Folsom and Oahu when solar elevation angle is greater than 10�.
More details of the datawill be explained in Section 2. In addition to
visual inspections, the goodness of fit [42] for each PDF is assessed
using the Kolmogorov-Smirnov test [43]. However, all of the
applied PDFs are rejected using the 5% confidence level. In addition,

time series of DNI usually have different behaviors under different
weather conditions [3,22]. For example, the DNI variability is much
higher under partially cloudy skies than under a clear skies [8].
Ideally, probabilistic forecasts for DNI should be adaptive to
different weather conditions [26].

Therefore, in this work, a probabilistic forecasting model is
developed based on the k-nearest neighbor (kNN) ensemble pre-
dictions to generate arbitrary PDFs of DNI for intra-hour forecast
horizons: 5-, 10-, 15-, and 20-min. kNN searches and identifies k
historical time instances whose weather features are closed to the
weather features of current time instance [17,44]. With the iden-
tified historical time instances and corresponding DNI behaviors,
the kNN generates unique PDF forecasts for different weather
conditions. The proposed model is developed and evaluated using
high-quality data collected in locations with different climates. The
quantitative evaluation of the proposed model is performed based
on the Prediction interval coverage probability (PICP), the Predic-
tion interval normalized averaged width (PINAW), the Brier Skill
Score (BSS), the Continuous ranked probability score (CRPS), and
statistic consistency. A Persistence Ensemble (PeEn) model is
employed as a reference model. Gaussian PDF forecasts are also
computed using the same kNN ensemble predictions to assess the
advantages of using arbitrary and adaptive PDF forecasts. Details of

Nomenclature

ANN artificial neural network
BS Brier score
BSS Brier skill score
CDF Cumulative density function
CRPS Continuous ranked probability score
DIF Diffuse irradiance
DNI Direct Normal Irradiance
kNN k-nearest neighbor
kNNEn kNN ensemble model
kNNGD kNN Gaussian model
MAE Mean absolute error
MBE Mean bias error
MRE Missing rate error
NRBR Normalized red to blue ratio
NWP Numerical Weather Prediction
PDF Probability density function

PeEn Persistence ensemble model
PI Prediction interval
PICP Prediction interval Coverage probability
PINAW Prediction interval normalized averaged width
RMSE Root mean square error
B Beam/Direct irradiance
clr Clear-sky condition
FH Forecast horizon
I Irradiance
k Clear-sky index
M Number of ranks
N Number of instances
P Probability
p Persistence
s Forecast skill
t Time instance
V Irradiance variability

Fig. 1. Probability density functions generated based on the persistence forecast errors. The forecast errors are obtained by assessing the persistence model on the (a) Folsom and (b)
Oahu training sets.
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