
Scaling of slow-drift motion with platform size and its importance for
floating wind turbines

R.C. Lupton*, R.S. Langley
Department of Engineering, University of Cambridge, Trumpington St, Cambridge, CB2 1PZ, UK

a r t i c l e i n f o

Article history:
Received 25 March 2016
Received in revised form
14 September 2016
Accepted 23 September 2016

Keywords:
Floating wind turbines
Offshore wind
Wind energy
Slow drift
Frequency-domain modelling
Second-order hydrodynamics

a b s t r a c t

Slow drift is a large, low-frequency motion of a floating platform caused by nonlinear hydrodynamic
forces. Although slow drift is a well-known phenomenon for ships and other floating structures, new
platforms for floating wind turbines are significantly smaller in scale, and it is yet to be established how
important slow drift is for them. In this paper we derive an approximate expression for the scaling of the
slow drift motion with platform size, mooring characteristics and wave conditions. This suggests that
slow drift may be less important for floating wind turbines than other, larger, floating structures. The
accuracy of the approximations is discussed; in the one case where detailed data is available, the
approximate result is found to be conservative by a factor of up to 40.
© 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Floating wind turbines are increasingly of interest for their
ability to access wind resources over deep water. Their develop-
ment draws on both existing fixed-base wind turbines and other
types of floating platforms, but introduces additional modelling
challenges which require the development of new modelling tools.
In this paper we consider the importance of the ‘slow drift motion’
for floating wind turbines; a wider discussion of modelling floating
wind turbines is given in Ref. [1].

Slow drift is a large, low-frequencymotion of a floating platform
caused by nonlinear hydrodynamic forces which excite a resonant
motion of the moored platform [2, chapter 5]. These second-order
forces are much smaller than the main hydrodynamic loading, but
occur at low frequencies where there is otherwise little excitation.
Since there is typically little damping in the low-frequency modes
of the moored platform, the response can be large despite the small
magnitude of the forces. Slow drift is therefore one of the three
main components of the loadings and motion in a mooring system,
alongside static and wave-frequency forces [3]. Although we focus
here on the low-frequency forces, there are similar high-frequency

nonlinear forces which can excite structural vibrationmodels of the
structure [2].

As well as its practical importance for design, this motion pre-
sents challenges in modelling. In the time domain, the low fre-
quency of the motion means that very long simulations are needed
to properly capture the behaviour. In the frequency domain,
although the spectrum of the nonlinear forces can be calculated
fairly easily, the statistics are non-Gaussian, which adds a little to
the difficulty of predicting the response. It is therefore useful to
know how significant the slow drift motion can be for floating wind
turbines. Note that it is not necessary to neglect it completely to
achieve simplifications: in the frequency domain, simplifications
can be made if the slow drift motion is small compared to the wave
frequency motion, and its statistics can be approximated as
Gaussian.

Although slow drift is well-known in traditional floating
offshore structures, it has been studied in only a few cases for
floating wind turbines. Lucas [4] calculated the first- and second-
order response of the OC3-Hywind spar-buoy [5] and a semisub
platform, using the commercial panel code WAMIT [6] together
with an in-house code, for three regular-wave and three irregular-
wave conditions. More recently, motivated by observations of
possible second-order effects in scalemodel tests [7], Roald et al. [8]
calculated first- and second-order forces and responses for two
specific floating wind turbine designs, the same OC3-Hywind spar* Corresponding author.
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buoy, and a tension-leg platform (TLP). They also used WAMIT,
together with linearised system matrices calculated by the wind
turbine code FAST [9]. Although FAST does not yet account for
second-order hydrodynamics, this is being addressed [10]. Bayati
et al. [11] apply the same approach to a semisub platform.

The conclusions of these results for the different platforms and
wave conditions vary: in some cases the slow drift response is
smaller than the first-order motion, and in some cases it is larger.
This contrasts with the expectation for traditional floating struc-
tures that the slow drift motion is large compared to the first-order
motion, albeit for only the few results which are available. We
suggest this difference in behaviour may be due to the significant
difference in scale between floating wind turbines and other
floating structures: some can be an order of magnitude larger than
floating wind turbine platforms, while ships can be even larger.

To our knowledge there is no particular discussion in the liter-
ature of how slow drift motion scales with the size of the floating
platform. In this paper, we derive an expression which approxi-
mates the scaling of the slow drift motion with platform size,
mooring characteristics and wave conditions. While the studies
mentioned above give results for particular platform designs and
wave conditions, we aim to give a more general result. To do this
several approximations and assumptions have been made, so the
result is only an approximation. We conclude by discussing the
expected accuracy of these approximations.

Frequency-domainmodels of floating wind turbines, whether or
not they include second-order hydrodynamics, have previously
limited themselves to the rigid-body dynamics of the floating
platform [1]. Although this is often reasonable, it has sometimes
been presented as a limitation of the frequency-domain approach
itself. We therefore note that the approach described here is
capable of including the flexibility of the structure, and give an
example of the ‘OC3-Hywind’ floating wind turbine mentioned
above.

Before beginning we should put these second-order low-fre-
quency forces into perspective on a wind turbine. As Roald et al. [8]
show, when the turbine is operating the low-frequency aero-
dynamic forces on the rotor are much larger than the low-
frequency hydrodynamic forces, making the second-order hydro-
dynamic forces unimportant. However, they are still of interest
whenever the turbine is not operating. This may be due to high
wind speeds (in extreme environmental conditions), or due to
faults (under any environmental conditions).

2. Frequency-domain model of flexible structure

The basic form of the frequency domain model isn
� u2M þ iuBþ K

o
qðuÞ ¼ FðuÞ (1)

or equivalently

qðuÞ ¼ HðuÞFðuÞ (2)

where H is the system transfer function matrix, and q and F are the
complex amplitude of the response and applied force for sinusoidal
motion at frequency u:

F ¼ FðuÞeiut (3a)

q ¼ qðuÞeiut (3b)

with the convention that the real part is assumed. If the cross-
spectral density of the force is SFF(u), the cross-spectral density of

the system response can be found as [12, chapter 6]:

SqqðuÞ ¼ HðuÞSFFðuÞH�T ðuÞ (4)

where *T indicates the complex conjugate transpose. The response
variances can then be found from the covariance matrix,

E
h
qqT

i
¼ Re

Z∞
0

SqqðuÞdu (5)

These equations are very general. Next, the parts of the equation
of motion (1) will be defined in more detail in relation to a general
floating structure. Then the frequency-domain model is applied to
an example floating wind turbine.

2.1. Equations of motion of a floating structure

For a flexible structure with hydrodynamic loading, the mass,
damping and stiffnessmatrices which appear in Equation (1) can be
written as

M ¼ Mstruct þ AhðuÞ (6a)

B ¼ Bstruct þ BhðuÞ þ Bv (6b)

K ¼ Kstruct þ Kh þ Km (6c)

Here Ah and Bh are the hydrodynamic added mass and radiation
damping matrices; Bv is a linearised viscous damping matrix; Kh is
the hydrostatic stiffness matrix; Km is the linearised mooring line
stiffness; and Mstruct, Bstruct and Kstruct are the structural mass,
stiffness and damping matrices. Most commonly the submerged
part of the structure will be assumed rigid and the hydrodynamic,
hydrostatic and mooring matrices will contain only the terms
relating to the six rigid-body degrees of freedom, while the struc-
tural system matrices will in general relate to all the degrees of
freedom of the structure.

The applied forces consist of aerodynamic loads on the wind
turbine rotor, wave excitation forces, and viscous drag forces. Here
we ignore aerodynamic and viscous forces, although they could be
included given a suitable linearisation. Mooring line forces are
assumed to be accounted for by the linearised stiffness matrix Km
and are not counted as applied forces here. Correct to second order,
the wave excitation forces can be written as the first two terms in a
Volterra series,

FðtÞ ¼
Z∞
�∞

H1ðuÞzðuÞeiutdu

þ
Z∞
�∞

Z∞
�∞

H2ðu1;u2Þzðu1Þzðu2Þeiðu1þu2Þtdu1du2 (7)

where zðuÞ is the Fourier transform of the sea surface elevation, and
H1(u) and H2(u1,u2) are the Fourier transforms of the first- and
second-order Volterra kernels [13]. This shows that the wave
loading consists of forces at u which are linear in the wave am-
plitudes, and forces at u1 þ u2 which are second order in the wave
amplitudes. Because the range of the integrals above is from �∞ to
∞, the second-order forces occur at both the sum and difference
frequencies of the waves. The difference-frequency forces are of
particular interest because they can excite large platform motions.
Although in future it may be of interest to include sum-frequency
forces, they are not considered further at present.
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