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A B S T R A C T

The scenario of two tiered geosynthetic-reinforced slopes, where the upper tier is vertical and the lower tier is
inclined at an angle, is termed as a bilinear geosynthetic-reinforced slope (BGRS) in this note. This note presents
a pseudo-static limit equilibrium approach employing a top-down log spiral mechanism to determine the re-
sultant reinforcement force in the lower tier required for global seismic stability. An example was presented to
illustrate steps for achieving the resultant reinforcement force required for internal seismic design of re-
inforcement rupture and show how much the maximum reinforcement force at each layer is in line with its
distribution function. The reinforcement force in the BGRS is subsequently compared with that in the equivalent
geosynthetic-reinforced slope under different case. In addition, it is found that the resultant reinforcement force
in the lower tier increases first and then decreases with an increase of height ratio of the upper tier to the BGRS.

1. Introduction

A new geosynthetic-reinforced earth structure (GRES) is built into a
two-tiered geosynthetic-reinforced slope that involves one with vertical
upper tier and another with an inclined lower tier [1]. This structure
mentioned herein can be called as the bilinear geosynthetic-reinforced
slope (BGRS). Unfortunately, specialized design method of BGRSs is not
existed in current guidelines [2–4]. However, using a rigorous limit
equilibrium (LE) approach, one research paper explored the impact of
the BGRS on the resultant reinforcement force required for global static
stability, and showed that no reinforcement should be needed when the
inclination of the lower tier got shallower [5].

Often, GRESs after major earthquakes achieved a better perfor-
mance than unreinforced retaining structures in the field observation
[6]. This is mainly due to the flexibility of GRESs and/or the re-
dundancy in design [7,8]. In a seismically active region, however, the
seismic design of GRESs is still essential during their service life. For
BGRSs, there is no doubt that their seismic design cannot be also ig-
nored in such region. Usually, the seismic design of GRESs has been
performed using the pseudo-static LE approach because this approach is
relatively simple to implement, tangible, and well accepted in practice
[7].

The objective of this study is to formulate the resultant re-
inforcement force required for internal seismic design of BGRSs
through extending the method of Ruan et al. [5], and then to de-
termine the maximum reinforcement force at each layer according to

its distribution function. In additional, an example is given to show
the application of the approach presented in this study, and compare
with the maximum reinforcement force in the BGRS and the
equivalent geosynthetic-reinforced slope (EGRS) under seismic con-
dition.

2. Analytical formulation

In global seismic stability analysis of BGRSs, log spiral slip surfaces
as part of the LE formulation are assumed– refer to Fig. 1 for notation
and convention. In the Fig. 1, the EGRS surface is OC, the resisting
forces, TE1 and TE2, are resultant reinforcement forces of all layers for
the upper and lower tiers, respectively, while the driving force, WE, is
the weight of the entire failure mass (i.e., Region OBCE). The line of
action of TE1, D1, is measured from the bottom of the upper tier while
the line of action of TE2, D2, is measured from the bottom of the lower
tier.

The line of action of the resultant reinforcement force cannot be
known, nor can be derived by the formulation, but can only be as-
sumed. Based on a set of experimental and numerical studies, Al Atik
and Sitar [9] found that the line of action of the dynamic earth
pressure force in LE analyses should be at one third of the wall
height. This finding was subsequently adopted by some guidelines
for seismic design of GRESs [2]. For D1 in the upper tier, thereforce,
we assume that it is equal to H1/3. Typically, the elevation of the
resultant reinforcement force of the lower tier will move upwards
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when the load of the upper tier appears and/or the inclination of the
lower tier occurs. Thereforce, it is reasonable to assume D2 to act at
H2/2.

For completeness, the expression for the resultant reinforcement
force in the upper tier, TE1, is reproduced here from Vahedifard, et al.
[7]
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where, γd is the unit weight of the reinforced soil; ′β1 and ′β2 are angles at
points where the log spiral slip surface enters and exits the upper tier; ′β
is the angle in polar coordinates defined relative to Cartesian co-
ordinate system translated to Pole’ ( ′XC, ′YC) from the origin E – Fig. 1; ′A
is log spiral constant, i.e., − ′ ′ − − ′ ′H ψβ β ψβ β/[exp( )cos exp( )cos ]1 1 1 2 2 ,

where, H1 is height of the upper tier,ψ = tanϕd, and ϕd is the design
internal angle of friction.

In virtue of resultant force of normal and shear force along the log
spiral surface going through the pole, the moment of this component is
equal to zero. Consequently, at a LE state the resisting and driving
moments are equal as shown:

= +M M MWE TE TE1 2 (2)

where, MTE1 and MTE2 are moments due to TE1 and TE2, respectively,
while MWE is moment due to WE. The computational formulae of MWE,
MTE1 and MTE2, respectively are thus as follows:
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Using Eqs. (1)–(5), one can solve TE2 which is as follows:

= − −−( )T M M Ae β D( )/ cosWE TE
ψβ

E2 1 1 21 (6)

where, H2 and H are heights of the lower tier and the BGRS, respec-
tively; β1 and β2 are angles of points where the log spiral enters and
exits the BGRS – Fig. 1; α is the angle of the EGRS; β is the angle in polar
coordinates defined relative to Cartesian coordinate system translated
to Pole (XC, YC) from the origin O (0, 0); A is log spiral constant, i.e., H/
[exp(-ψβ1)cosβ1- exp(-ψβ2)cosβ2].

For a dimensionless analysis using TE1 and TE2, one can, respec-
tively, define KTE1 and KTE2 as
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3. Illustrative example

An illustrative example is presented to demonstrate the application
of the extended approach in this study and compare with the maximum

Fig. 1. Notation and convention for the presented LE approach.

X. Ruan et al. Soil Dynamics and Earthquake Engineering 100 (2017) 454–457

455



Download English Version:

https://daneshyari.com/en/article/4927040

Download Persian Version:

https://daneshyari.com/article/4927040

Daneshyari.com

https://daneshyari.com/en/article/4927040
https://daneshyari.com/article/4927040
https://daneshyari.com

