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A B S T R A C T

In this study, the propagation of surface waves in both one- and two-dimensional periodic structures is
investigated. By combining finite element method, an energy distribution parameter is defined and a new
method for identifying surface wave modes is suggested. The effectiveness of this new method is validated by
comparing with some related studies. Furthermore, this method is used to study a two-dimensional periodic pile-
soil system based on a three-dimensional numerical model and the dispersion curves of surface waves are easily
obtained. To show the efficiency of attenuation zone, the responses of a finite periodic pile-soil system to a
surface wave input are simulated. Results demonstrate that the region of excitation frequency in which vibration
reduction occurs is fully consistent with the theoretical attenuation zone for surface waves. The advantage of this
method is that it makes the study of surface waves more convenient and accurate.

1. Introduction

In the past two decades, the propagation of elastic waves in periodic
structures has attracted a lot of attention due to its unique properties
such as attenuation zones (AZs) and negative refraction [1,2]. These
characteristics lead to some potential applications such as noise control
and seismic isolation [3–5]. However, compared with bulk waves, less
attention has been paid to the propagation of surface waves (SWs). SWs
can be described as non-dispersive waves which propagate near the free
surface of a homogenous solid medium. The propagation of SWs in non-
homogenous systems such as periodic structures shows different
characteristics. For example, the phase velocity and group velocity of
SWs vary with frequency, i.e., the SWs in periodic structures are
dispersive waves. Furthermore, some theoretical and experimental
studies reported that, similar with bulk waves, AZs also exist when
SWs propagate in periodic systems [6–8].

There are some studies concerning the dispersion relation of SWs
propagating in periodic structures. Djafari-Rouhani et al. [9] presented
a detailed procedure of plane wave expansion (PWE) method and
investigated the dispersion curves and AZs of Rayleigh waves in
periodic alternating layers of two elastic and isotropic materials. Using
PWE method as well, Tanaka et al. [10] reported SWs as well as pseudo
SWs in two-dimensional periodic elastic structures consisted of AlAs
cylinder inclusions embedded in GaAs background. Sun and Wu [11]
studied the SWs propagating in two-dimensional steel/epoxy periodic
structures by finite difference time domain (FDTD) method. Yan and
Wang [12] developed a wavelet-based method to calculate the disper-

sion curves of SWs in two-dimensional periodic structures including
both mixed fluid/solid systems and solid/solid systems. By finite
element method combined with sound cone limitation, i.e., surface
wave modes only appear below the sound line, Assouar et al. [13]
studied SWs propagating in two-dimensional periodic structures with
three different types: fluid/solid, solid/solid, and air connected stubbed
substrate, respectively. Based on finite element method as well,
Graczykowski et al. [14] proposed the center approach of elastic energy
to discuss true and pseudo SWs in one-dimensional periodic structures.
The transmission, reflection, and surface-to-bulk losses in a finite
periodic system were also calculated.

Though some important achievements have been obtained on SWs
propagating in periodic structures, there are some weaknesses in the
previous methods. For example, the cone of sound criterion is able to
sort most of surface modes, however, it fails in the case that some
surface modes appear in the radiative region [14]. The aim of this study
is to propose an efficient and accurate method for identifying surface
wave modes from bulk wave modes. Investigation shows that the
dispersion curves of SWs propagating in periodic structures can be
easily obtained by this method. Moreover, the present method is still
reliable when dealing with the periodic systems with different dimen-
sions and with diverse geometries. In fact, pile barriers often used in
ambient engineering can be considered as a periodic structure. The
method proposed in this study is able to analyze vibration screening by
periodic pile barriers according to the AZ of periodic structures.
Therefore, this study provides a new perspective for SWs isolation by
periodic structures in practical engineering.
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2. Basic theory

Assuming continuous, perfectly elastic, small deformation and
without consideration of damping, the governing equation of waves
propagating in periodic systems can be given as

ρ
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cu u∂
∂

− ∇⋅ ∇ = 0
2

2 (1)

where ρ is the mass density, u is the displacement vector, t is time
parameter, ∇ is differential operator, and c is the elastic constant.

According to the theory of periodic structures, the displacement
field can be expressed as

t eu r u r( , ) = ( )i ωtk r
k

( ⋅ − ) (2)

where r denotes the coordinate vector; k is the reduced wave vector; ω
is angular frequency; and uk(r) is a periodic function about the periodic
constant R. Thus, uk(r) can be written as

u r R u r( + ) = ( )k k (3)

Substituting Eq. (3) into Eq. (2), the periodic boundary condition is
obtained,

t e tu r R u r( + , ) = ( , )ik R⋅ (4)

In fact, a periodic structure can be replaced by a unit cell in terms of
the periodic boundary condition of Eq. (4). Basically, to deal with the
problem of SWs, a semi-infinite system with free boundary condition
should be considered. Because the displacements of SWs decay rapidly
along the depth, to simplify the analysis, a unit cell with large
parameter h about depth and a fixed boundary on the bottom is usually
used to replace the unit cell with infinite thickness [13].

Then, the eigenvalue equation for the unit cell can be written as

ωΩ k M u 0( ( ) − ) ⋅ =2 (5)

where the stiffness matrix Ω is a function of the wave vector, M is the
mass matrix. Taking the periodic boundary condition Eq. (4) and fixed
boundary condition of the unit cell (i.e. u=0) into account, the
eigenvalues of Eq. (5) can be obtained by a commercial software
(COMSOL Multiphysics 5.1) for every given reduced wave vector k.

However, surface modes as well as bulk modes mix in the dispersion
curves of the foregoing numerical model. To distinguish the surface
modes from the bulk modes, an energy distribution parameter ξ is
proposed in this study, which reflects the energy distribution of a
considered wave mode in this system:
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in which the integrals are calculated in the area or volume of the unit
cell with height of λ2 and h, respectively; The symbol λ is the
wavelength of a considered wave and Wε is the elastic strain energy
density (ESED), respectively. Eq. (6) demonstrates that the parameter ξ
varies from 0 to 1. Obviously, the waves are surface modes when ξ
approaches to 1. In the present study, it is suggested that the criterion
for identifying surface modes is ξ >0.9. In fact, the energy distribution
parameter defined in Eq. (6) has a clear physical meaning. Its
magnitude represents how much energy is located within twice the
wavelength of a considered wave mode. When the amplitude of
displacement decays exponentially along depth away from free surface,
the wave is considered as a surface wave. In homogenous media,
analytical solutions for surface waves can be found. However, there is
no analytical solution to surface waves for periodic structures up to
now. By defining an energy distribution parameter, a new criterion is
proposed and extended to the periodic system to identify surface waves.
The effectiveness of the present approach is validated by comparing
with some related results. Furthermore, the dynamic responses of a
finite periodic pile-soil system are studied to show the efficiency of the

present method in engineering vibration reduction.

3. Results and discussion

The problem of SWs propagating in a one-dimensional periodic
structure reported by Hu et al. [15] is reconsidered by using the present
method. Layered elastic material copper and aluminum are placed
alternatively in the x direction to form a periodic half-space. The mass
density ρ, Poisson ratio ν and Young modulus E of copper are taken as
8920 kg/m3, 0.355 and 115 GPa, respectively; and those of aluminum
are 2700 kg/m3, 0.334 and 69 GPa, respectively. Due to periodicity of
the structure, only a unit cell is considered as shown in Fig. 1(a). The y
axis is chosen to be perpendicular to the free surface; a denotes the
periodic constant of the unit cell. To check the existence of SWs, the
depth should be large enough, i.e., larger than several periodic
constants. In most of the previous literatures [16,17], it is taken as
h≥10a. In the present study, the unit cell with a depth h=20a is
considered.

For the unit cell mentioned in Fig. 1, Fig. 2(a) gives the dispersion
curves of SWs obtained by the present method. The results obtained by
Hu et al. are also plotted in Fig. 2(a) for comparison. The lower and
upper branches of the dispersion curves are opened at the reduced wave
number k π a= / , where the group velocity of SWs is equal to zero. The
AZ for SWs is the region between the two branches. Good agreement is
found for this case. Furthermore, choosing the two materials as a same
material such as copper, the copper-aluminum system becomes a half-
space of homogenous medium which has analytical solutions for SWs
[18]. In this case, the SWs are non-dispersive and there are no AZs
existing in the isotropic homogenous system. The results are shown in
Fig. 2(b) and good agreement is also found. It is obvious that the
present method is correct.

In order to depict the decaying characteristics of SWs vividly, the
normalized ESED and normalized displacement amplitude of surface
modes changing with depth along the interface denoted by dash line in
Fig. 1(a) are plotted in Fig. 3(a) and (b), respectively. Points s1 and s2 in
Fig. 2(a) correspond to lower and upper branches of the dispersion
curves of SWs, respectively. The symbols ux and uy in Fig. 3(b) denote
the component of displacement in the x and y directions, respectively. It
is obvious that both elastic strain energy and displacements of the
considered waves are concentrated in a very thin layer near the free
surface, and decrease rapidly from a distance far away the free surface,
which indicates that the considered waves are indeed SWs.

As another example, the dispersion relation of SWs in a pile-soil
periodic system is investigated by using three-dimensional (3D) numer-
ical model combining with the identifying criterion proposed in the
present study. The system is formed by foam piles embedded in soil
substrate. The two materials are assumed to be elastic and isotropic.
The mass density ρ, Poisson ratio ν and Young modulus E of foam are
taken as 60 kg/m3, 0.32 and 37 MPa, respectively; and those of soil as
1800 kg/m3, 0.35 and 20 MPa, respectively. The unit cell is shown in
Fig. 4(a). The periodic constant of the unit, the radius of pile and the

Fig. 1. Numerical model for the one-dimensional periodic structure: (a) unit cell, (b) the
reduced wave vector.
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