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A B S T R A C T

In this paper, shear wave propagation in soils is examined in a stochastic context considering spatial variability
of the shear modulus soil parameter. To this purpose, the recently established concept of dynamic mean and
variability response functions (DMRF, DVRF) is reformulated in the framework of stochastic finite element
analyses of shear wave propagation problems in order to efficiently calculate the response time history statistics
of the soil surface. Similarly to the approximation formulas of classical VRFs, a fast Monte Carlo simulation
procedure is implemented to numerically evaluate the above functions in the time domain. The main advantage
of the proposed methodology lies on the independence of the DMRF and DVRF on the marginal probability
density function and correlation structure of the stochastic system parameter, which in our case is assumed to
be the inverse of the soil shear modulus G1/ . By integrating the product of the spectral density of G1/ with the
DMRF and DVRF, the mean and variance of the ground response are obtained at each time step of the dynamic
analysis. The method also allows for the estimation of time dependent but spectral and probability distribution
free upper bounds of the response mean and variance. To illustrate the efficiency and applicability of the
proposed approach, stochastic finite element analyses of wave propagation of a Ricker synthetic wavelet as well
as a recorded earthquake motion in 1D and 2D soil domains are performed and a sensitivity analysis is carried
out with respect to various correlation structures of the underlying random fields representing G1/ . The accuracy
of the proposed methodology is validated with comparison to direct Monte Carlo simulation. Useful conclusions
regarding the sensitivity of the system response to the spectral characteristics of the underlying random fields
representing G1/ are drawn.

1. Introduction

In recent years, numerical methods that incorporate stochastic
material properties of soils in various geotechnical engineering appli-
cations have gained considerable attention. Characteristic applications
include footing bearing capacity on soils with spatially variable cohe-
sion and friction angle [1,2], footing settlement analyses for soil layers
with stochastic elasticity modulus [3,4]. In addition, consolidation of
soil layers with uncertain properties [5], as well as seepage analyses [6]
were investigated, while slope stability analyses have been carried out
[7]. Furthermore, dynamic problems with stochastic soil parameters
are investigated in a number of research articles [8–11]. A wide range
of geotechnical engineering applications where the soil uncertain
material properties are taken into account can be found in [12]. All
the above test cases have been analyzed in the context of the finite
element method incorporating in various ways the stochastic property
of the soil. Most of the studies regarding uncertain soil properties are

based on some version of the globally applicable Monte Carlo
Simulation (MCS) method. The advantage of the MCS is its applic-
ability to any probabilistic finite element model regardless of its
complexity. Besides the well-known limitations of MCS due to its large
computational cost, the main disadvantage of this approach is that the
correlation structure of the underlying stochastic property of the soil
materials has to be known, which is rarely the case. Thus, the study of
sensitivity of the required response with respect to different correlation
characteristics makes the MCS almost prohibitive for the treatment of
realistic examples.

In order to tackle the aforementioned limitations, the concept of
variability response functions (VRF) was introduced in a number of
articles [13–15]. The VRF is a Green's function which relates the
variance of a response quantity of a system to the spectral density
function of its underlying uncertain parameters [16]. The VRF depends
on deterministic system properties related to geometry, boundary and
loading conditions, mean material properties, as well as the standard
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deviation σff of the considered stochastic parameter. The VRF was
initially expressed in closed form for statically determinate and
indeterminate beam and truss structures under deterministic loading
conditions. Later the VRF concept was extended to stochastic plate
bending problems [17]. As stated in [18], in most problems, a closed
form expression of the VRF is extremely difficult if not impossible to
extract. The VRF can alternatively be estimated numerically using a so-
called fast Monte Carlo finite element based procedure explained in
[18,19]. Other applications of the variability response function include
the study of apparent material properties for heterogeneous random
materials [16] as well as robust design optimization taking into account
the stochastic system parameters [20]. The standard VRF was for-
mulated for static stochastic problems. An extension of the VRF for
dynamic problems leading to the dynamic variability response function
(DVRF) was introduced in [21]. The DVRF and the closely related
Dynamic Mean Response Function (DMRF) provide the same spectral-
free advantages of the VRF for dynamic loadings and give insight on
the sensitivity of the response of dynamical systems with respect to the
stochastic properties [22].

In this paper, the concept of DVRF and DMRF is used to simulate
the shear wave propagation in soils with spatially varying shear
modulus G. The independence assumption of DVRF, DMRF functions
to the spectral density function of the underlying material property
makes the methodology ideal for problems involving soil materials
where lack of sufficient data is the common case. It is shown that
through the DMRF, DVRF functions, the time history of mean and
variance of the response quantity of interest can be accurately and
efficiently calculated for stochastic shear wave propagation problems in
1D and 2D soil domains. A fast Monte Carlo Simulation (FMCS)
method is used in order to numerically evaluate the DMRF and DVRF
functions for displacement, velocity and acceleration of the soil layer
surface. Application of finite element analyses of propagation of
synthetic Ricker wavelets, as well as a real recorded earthquake motion
are used as test-cases to demonstrate the power of the method.
Furthermore, upper bounds of the mean and variance of the response
quantities of interest are established through the use of the calculated
DMRF and DVRF functions. The accuracy of the proposed approach is
proven by direct comparison of the results obtained via the MCS
method. Useful conclusions regarding the sensitivity of the statistical
characteristics of the soil response on the underlying nature of the
material correlation properties are drawn.

2. Simulation of stochastic shear wave propagation in soils

In this work, the stochastic soil parameter considered is the inverse
of the soil shear modulus G1/ which varies randomly along the vertical
axis y in 1D models and in the horizontal and vertical axes x, y for
plane strain models. In the general 2D, case the following relation
holds:

G x y
F f x y1

( , )
= ·(1 + ( , ))0 (1)

where G x y( , ) denotes the soil shear modulus at the spatial point with
coordinates (x,y), f x y( , ) is a zero-mean homogeneous stochastic field
which models the spatial variation of G1/ around its mean value
F G= 1/0 0.

In wave propagation analyses in the time domain, the general
dynamic equilibrium system of equations has to be solved:

Mu Cu Ku Pt t t t¨( ) + ˙( ) + ( ) = ( ) (2)

where M , C and K are the mass, damping and stiffness matrices, u t¨( ),
u t˙( ) and u t( ) are the acceleration, velocity and displacement vectors and
P t( ) is the external force vector.

In order to integrate the equation of motion (2), the implicit
unconditionally stable α-method (Hilber-Hughes-Taylor) [23] is used.
The basic parameters of the method are the timestep tΔ and the

parameter α which lies in the interval [−1/3, 0] and controls the
numerical damping. The two other parameters β and γ are calculated
as a function of α by the following relations:
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According to this time integration scheme, the following relations
are used:
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In Eqs. (4) and (5) the quantities with subscript n refer to time t while
n + 1 refers to time t t+ Δ for a chosen timestep tΔ . Combining Eqs. (4)
and (5) so that the basic unknown is un+1, the following relations hold:
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The equation of motion (2) is written at a time instance between the
time steps t and t t+ Δ :

Mu Cu Cu Ku Ku P Pα α α α α α¨ + (1 + ) ˙ − ˙ + (1 + ) − = (1 + ) −n n n n n n n+1 +1 +1 +1 (8)

Substituting Eqs. (6) and (7) in Eq. (8) and moving the t t+ Δ terms at
the left-hand side and the t terms at the right-hand side, the final form
of the linear system of equations is obtained:
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which can be written in the more compact form:

K u P=eff n eff n+1 ( +1) (10)

This equation can be solved for the unknown displacement vector un+1
at time t t+ Δ .

In this study, the shear wave propagates through an underlying
bedrock layer considered homogeneous to the soil layer above. The
compliance of the underlying bedrock layer is taken into account by the
addition of viscous dampers attached to the base nodes of the soil
model [24]. Both 1D and 2D shear wave propagation is considered, as
illustrated in Figs. 1 and 2 respectively. For the 1D shear wave
propagation, the shear stress is given by:

τ G u
y

= ∂
∂xy (11)

where u is the displacement along the horizontal axis x. The nodal
forces of a unit area 1D element of height hel illustrated in Fig. 1 are
calculated as follows:

⎧⎨⎩
⎫⎬⎭

⎡
⎣⎢

⎤
⎦⎥
⎧⎨⎩

⎫⎬⎭
F
F h

G G
G G

u
u= 1 −

−
i

j el

i

j (12)

and the matrix on the right-hand side of Eq. (12) corresponds to the
stiffness matrix for the 1D case. For the 2-dimensional simulation of
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