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A B S T R A C T

For both steel and RCC Bridges passing rivers or creeks, common practice in many countries is to provide
concrete wells to support the bridge girders. For many bridges that are strategically important in terms of
defense or trade, it is essential that they remain functional even after a strong earthquake hits the structure. The
present state of the art for design of well foundation is still marred with a number of uncertainties where a
simplistic pseudo static analysis of its response only prevails, though it is a well-known fact that loads from
super structure, character of soil and its stiffness plays an important role in defining its dynamic characteristics.
The present paper is thus an attempt to present a dynamic analysis model trying to cater to a number of such
deficiencies as cited above and also provide a practical model (amenable to design office application) that can be
used to estimate the pier, well and soil's dynamic interaction

1. Introduction

Well foundations otherwise called caissons are often deployed to
support a number of important bridges around the world. Verrazano
Narrows, San Francisco-Oakland bay bridge in USA, Rokko Island
Bridge in Japan, Mahanadi River and Kolaghat Rail Bridge in India are
some of the bridges that have been built on large diameter well
foundations.

In all these cases the super-structure or the top deck is supported
on massive piers, which in turn are supported on large diameter
caissons transferring the load to foundation soil.

Because of large diameter (5–12 m) and depth (15–30 m or even
more) of the caissons, it has long been assumed that well foundations
are far too massive and stiff to be affected by any vibration either due to
moving traffic or earthquake. Thus most of the codes of practice
assumes the bridge pier supporting the superstructure to be fixed at
top of well.

However, observations on performance of some of the bridges in
recent earthquakes like Loma Prieta (USA) 1989, Kobe (Japan) 1999,
Nepal 2015 (in Nepal and India), it is found that assuming the pier as
fixed at its base is certainly not realistic. Despite being huge, well
foundations are significantly affected by the propagating waves during
an earthquake that affects the response of the bridge pier in turn.

Design and construction of such well foundations and piers are
usually carried out as per recommendations of the codes of respective
countries and some of the most commonly used codes are IRC 6,45 and
78 [1–3], AASHTO [4], CALTRANS [5], and Eurocode 8 Part2 & 4 [6].

The design procedure adapted by many of these codes for seismic
analysis is quite simplified (though popular perception is that it is
conservative), and overlooks a number of crucial issues like:

1. Ignoring self weight of pier while calculating its time-period.
2. Ignoring the shear deformation characteristics of the pier column, as

in many cases, especially for flyovers having variable height depend-
ing on slenderness ratio of the pier, this can well dominate the pier's
dynamic behavior.

3. Inertial and kinematical interaction of the pier with well and its
surrounding soil.

Present paper proposes two mathematical models based on which
many of these limitations in terms of earthquake analysis can be
overcome to arrive at a realistic result. The analysis is analytical in
nature and does not require any special purpose software to be used
and can well be carried out in general purpose utility software like,
MATHCAD, MATLAB or even a spread sheet if necessary.
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2. Practice as in trend

Before we present the mathematical models for analysis of such
system, the practice as in trend [1–3], and other codes used inter-
nationally [4–6] are briefly reviewed.

Present recommendations in [1–3] for design of bridges under
seismic force are based on a study by Murthy and Jain [7] to bridge the
gap between [1] and state of the art international practice as prevalent
and made a significant improvement/modification to [1], compared to
its previous version.

The study and subsequent recommendation are in line with
procedure as furnished in [4,5] and is almost analogous in philosophy.

In the present study, though a number of recommendations were
made on different aspect of bridge design under seismic loading like
adapting different response reduction factor (R) for different parts of
the bridge, development of plastic hinges, damping properties etc., the
overview is restricted to the seismic response of the bridge pier part
and its foundation only.

As per [1], time-period of pier in fundamental mode is computed
from the expression

T D
F

= 2
1000 (1)

In Eq. (1), D = Dead load reaction from superstructure in kN. F =
Horizontal force in kN, to be applied at center of mass of the
superstructure for one mm horizontal deflection of the bridge along
considered direction of horizontal force.

In this context, it should be noted that code has not stated whether
we use an Euler-Bernoulli type beam or a Timoshenko type beam for
computation of F. The practice is usually to use beams ignoring the
shear deformation.

The basis of Eq. (1) is obviously assuming the bridge pier as a
member having single degree of freedom fixed at its base, with load

from superstructure considered as a lumped mass at its head (see
Fig. 1). The inertial mass of the pier itself is ignored.

Above expression is similar to what has been proposed in [4,5] that
recommends an expression

T D
F

= 0.32
(2)

here D and F are same as defined in Eq. (1), except that values are in
FPS unit.

The basis of these expressions is actually T π m k= 2 / where m is
the lumped mass considered at top of pier and k the stiffness of pier in
fundamental mode.

Japanese code JRA Part V [8] also recommends an expression
similar in nature and is given by.
T δ= 2.01 . Here δ= static deflection at the tip of pier due to lateral
load in meter. This can well be derived from the expression
T π m k π δ g= 2 / → 2 / . Assuming g=9.81 m/s2. One can easily arrive
at the equation as proposed in the Japanese code.

This again shows that the idealized model used to compute time
period in this case is also a single degree lumped mass inverted
pendulum type, like one used in [1–6].

Fig. 1 shows typical bridge piers deployed in practice to support the
superstructure of a bridge/flyover.

For the lumped mass model as shown in Fig. 1, ignoring the inertial
effect of pier, one may argue is conservative, as the added mass of pier
will only go on to elongate the time period, which will either reduce the
spectral acceleration or it may even remain invariant-depending on
pier geometry and superstructure load. However, as deflection, mo-
ment and shear are proportional to square of the time period will be
lower bound. The pier mass should also be incorporated in the time
period expression to arrive at a realistic result.

In a particular flyover, supporting piers (having same diameter/
width) may have different height. They are usually tallest at the center

Nomenclature

A Area of pier cross section;
Cx, Cθ Damping of soil in translation and rocking;
[C] Damping matrix;
CTi

s Constant of time period in shear mode;
CTi

b Constant of time period in bending mode;
D Diameter of well foundation, Dead load reaction fro

superstructure;
Df Depth of well foundation;
e Embedded depth of foundation;
E Young's modulus;
F Horizontal force at tip of pier;
g Acceleration due to gravity;
G Shear modulus of soil or beam;
H Height of pier;
I Importance factor or moment of inertia of pier;
II Inertial interaction;
KI Kinematic interaction;
Jθ Mass moment of inertia;
k Stiffness;
Ke,Kb,Ks Equivalent, bending and shear stiffness respectively;
[K] Stiffness matrix;
m mass;
mi modal mass in ith mode;
Mf Mass of foundation;
Msi Moment in pier in mode i;
[M] Mass matrix;
N Number of blows in a SPT test;
px Modal load vector;

[P] Load vector;
rs Slenderness ratio;
R Radius of gyration, Response reduction factor;
Sd,Sa Spectral amplitude and acceleration;
T Time period;
Te,Tb,Ts Effective, bending and shear mode time period respec-

tively;
usi Amplitude of pier in mode i;
Vs Shear wave velocity;
Vsi Shear in pier in mode i;
Wd Load from top deck;
Y, Ym General expression for differential equation;
z Vertical axis;
Z Zone factor;
αm Parameter varying with mode number;
β Code factor;
δ Static deflection;
δ δ δ, ,t b s Deflection of beam total, in bending and shear mode

respectively;
φi Eigen vector in ith mode;
γ γ,s c Density of soil and concrete;
η Shear correction factor;
κi Modal mass participation factor in ith mode;
λ A function;
μm Parameter varying with mode number;
ρc Mass density of concrete;
ω Natural frequency;
ω ω ω, ,e b s Effective, bending and shear mode natural frequencies;
ζ ζ,x θ Modal damping ratio in translation and rocking.
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