

Contents lists available at ScienceDirect

Soil Dynamics and Earthquake Engineering

CrossMark

journal homepage: www.elsevier.com/locate/soildyn

Design of monopiles for offshore wind turbines in 10 steps

Laszlo Arany^a, S. Bhattacharya^{b,*}, John Macdonald^a, S.J. Hogan^a

^a University of Bristol, United Kingdom

^b Chair in Geomechanics, University of Surrey, United Kingdom

ARTICLE INFO

Keywords: Monopile Offshore wind turbines Eigen frequency Design

ABSTRACT

A simplified design procedure for foundations of offshore wind turbines is often useful as it can provide the types and sizes of foundation required to carry out financial viability analysis of a project and can also be used for tender design. This paper presents a simplified way of carrying out the design of monopiles based on necessary data (i.e. the least amount of data), namely site characteristics (wind speed at reference height, wind turbulence intensity, water depth, wave height and wave period), turbine characteristics (rated power, rated wind speed, rotor diameter, cut-in and cut-out speed, mass of the rotor-nacelle-assembly) and ground profile (soil stiffness variation with depth and soil stiffness at one diameter depth). Other data that may be required for final detailed design are also discussed. A flowchart of the design process is also presented for visualisation of the rather complex multi-disciplinary analysis. Where possible, validation of the proposed method is carried out based on field data and references/guidance are also drawn from codes of practice and certification bodies. The calculation procedures that are required can be easily carried out either through a series of spreadsheets or simple hand calculations. An example problem emulating the design of foundations for London Array wind farm is taken to demonstrate the proposed calculation procedure. The data used for the calculations are obtained from publicly available sources and the example shows that the simplified method arrives at a similar foundation to the one actually used in the project.

1. Introduction

Offshore wind turbines are expected to operate for a lifetime of 20-30 years, while foundations are often designed for a longer design life. The selection of foundation type and the design is a complex task, which strongly depends not only on the site characteristics, but also on the maturity and track record of different design concepts. As the offshore wind industry is still in an early stage of large scale development, individual projects take a longer time than the rate at which technology advances. As such, it is not uncommon to change the type of turbine and the size/type of foundations during the development phase of a project. Therefore, development consent is typically obtained for a flexible project that allows for optimised detailed design using the most recent technological advances available at the time of final design. Consequently, it is important to have a simplified design procedure that allows for quick design using only limited site and turbine data, and that can be used in the tender design and early design phases of monopile foundations. Naturally, the procedure described in this paper has to be supplemented and refined with more accurate analyses when more information and data about the site conditions (met ocean data, geotechnical conditions) and chosen turbine becomes available.

Accordingly, this paper does not aim to provide a methodology for detailed design and optimisation of monopiles but aims to provide a tool for initial design. Most importantly, the paper aims to show the multidisciplinary complex nature of the task. As such, the procedure defines the monopile through a simple geometry that is described by a pile diameter, wall thickness, pile length, and embedded length. Practical issues related to installation and manufacturing are discussed and it may be noted these aspects are beyond the scope of generalised simplified design procedure. However, it is suggested that manufacturing procedures can be taken into account through S-N curves required for typical welds.

One of the main aims of a foundation is to transfer all the loads from the wind turbine structure to the ground safely and within the allowable deformations. Guided by Limit State Design philosophy, the design considerations are to satisfy the following:

 Ultimate Limit State (ULS): The first step in design is to estimate the maximum loads on the foundations (predominantly overturning moment, lateral load and the vertical load) due to all possible design load cases and compare with the capacity of the chosen foundation. For monopile type of foundations, this would require computation of

* Corresponding author. E-mail addresses: S.Bhattacharya@surrey.ac.uk, Subhamoy.Bhattacharya@gmail.com (S. Bhattacharya).

http://dx.doi.org/10.1016/j.soildyn.2016.09.024

Received 6 November 2015; Received in revised form 18 September 2016; Accepted 19 September 2016 0267-7261/ © 2016 Elsevier Ltd. All rights reserved.

Nomenc	Nomenclature		Extreme Wave Height
		F_d	soil density parameter
b_1, b_2	model parameters for Achmus et al. [4].	F_{f}	horizontal load carrying capacity of the foundation
е	eccentricity of loading $(=M/F)$	F_i	pile installation parameter
f	zero shear force point location below mudline	F_m	maximum horizontal force at the mudline expected in the
f_0	first natural frequency		lifetime of the turbine
f ₁ p	upper limit of the 1P frequency range	E.	cvclic load ratio parameter
f	fixed base (cantilever beam) natural frequency of the	, Europe	total horizontal wave force
JFB	towar	Ewind FOC	horizontal force due to the Extreme Operating Gust at
C	clower	• wina,200	rated wind speed
J_{yk}	characteristic yield strength	F	horizontal force due to Extreme Turbulence Model at
g	gravitational constant	Twind,ETM	nonzontal loree due to Extreme Turbulence model at
g	distance from zero shear force location to pile toe	F	fore of (clong wind) fores on the turbing
g_A	air gap between the highest expected wave crest level and	Γ_{χ}	drea force due to viewe
	the platform	r _D	in antic forme due to waves
k	wave number		herita force due to waves
k_0	equivalent stiffness of first tower mode	F_R	norizontal load capacity of the foundation (assuming soil
k_h	horizontal modulus of subgrade reaction		failure)
m	total structural mass, also strain accumulation exponent	FLS	Fatigue Limit State
m_0	equivalent mass of first tower mode	G^*	modified shear modulus
m_P	mass of the pile	G_S	soil's shear modulus
m _{RNA}	mass of the rotor-nacelle assembly	H_m	maximum wave height (for a given significant wave height
m_T	mass of the tower		H_S)
Мтр	mass of the transition piece	$H_{m,50}$	maximum wave height expected in 50 years
nh	horizontal coefficient of subgrade reaction	H_S	significant wave height
n ₁₋₁	coefficient of subgrade reaction at the first load cycle	$H_{S,50}$	50-year significant wave height
n	coefficient of subgrade reaction after N load cycles	HWL	Highest Water Level with 50 year return period
s	shape parameter of Weibull distribution	Ι	reference turbulence intensity
5	undrained shear strength of soil	I_P	pile's second moment of area
S_u	time also degradation parameters degradation model	I_T	second moment of area of tower
<i>i</i> , <i>i</i> _a , <i>i</i> _b	grout thickness	K	scale parameter of Weibull distribution
	pile well thickness	K_I	lateral stiffness of the foundation
ip t	tower well thickness	\tilde{K}_{IR}	cross coupling stiffness of the foundation
	well thickness of the transition piece	Kp	Rankine coefficient of passive pressure
lTP	transition piece well this mag	K _P	rotational stiffness of the foundation
lTP	transition piece wan unckness	L_k	horizontal turbulence integral length scale
и	turbulent wind speed component	Lp	pile embedded length
<i>u_{EOG}</i>	Extreme gust speed		platform height (distance from mudline to platform level.
UEOG, Uout	Extreme Operating Gust (EOG) wind speed at cut-out	-5	that is to the top of the transition piece)
	wind speed	L_{T}	tower length
u_{ETM}	turbulent wind speed component for ETM		length of the transition piece
w(x, z, t)	horizontal water particle velocity	Δ _I _F M	amplitude of the bending moment in a load cycle
$\dot{w}(x, z, t)$	horizontal water particle acceleration	111 amp	(-M - M)
x_c	characteristics cyclic stress ratio	М	$(-M_{max} - M_{min})$
Zhub	hub height	M_f	overturning moment capacity of the foundation
A_R	Rotor swept area	M_{ULS}	maximum overturning moment at the mudline expected
C_L, C_R	lateral and rotational foundation flexibility coefficients		in the lifetime of the turbine
C_m	inertia coefficient	M_{max}	maximum bending moment in a load cycle
C_S	substructure flexibility coefficient	M _{mean}	mean bending moment in a load cycle (=0.5•($M_{max}+M_{min}$))
C_T	thrust coefficient	M_{min}	minimum bending moment in a load cycle
D	rotor diameter	M_y	fore-aft (along-wind) overturning moment
D_b	bottom diameter of the tower	M_R	overturning moment capacity of the foundation (assum-
D_P	pile diameter		ing soil failure)
D_t	top diameter of the tower	M_{wave}	total overturning moment due to waves
D_{TP}	transition piece diameter	M _{wave,NWH}	total overturning moment due to waves for normal wave
E_{ea}	equivalent Young's modulus		height (NWH)
E _P	pile Young's modulus	Mwave FWH	total overturning moment due to waves for extreme wave
$E_{\rm s}(z)$	vertical distribution of soil's Young's modulus	wave,2.011	height (EWH)
$E_{S}(z)$	initial (small deformation) Young's modulus of soil at $1D_{\rm p}$	Muint FOC	overturning moment due to the Extreme Operating Gust
20	denth	***wina,EOG	at rated wind sneed
F	Voung's modulus of the tower meterial	м	at rated will speed
	aquivalent bending stiffness for benjaontal tower ton	IVIwind,ETM	overturning moment due to Extreme Turbulence Model at
EI_{η}	equivalent benuing summess for norizontal tower top	37	rated wind speed
E o o		N	number of load cycles
EOG	Extreme Operating Gust	NSS	Normal Sea State
ESS	Extreme Sea State	NTM	Normal Turbulence Model
ETM	Extreme Turbulence Model	NWH	Normal Wave Height

Download English Version:

https://daneshyari.com/en/article/4927158

Download Persian Version:

https://daneshyari.com/article/4927158

Daneshyari.com