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A B S T R A C T

A rigorous analytical method is developed to analyze the vertical vibration of a massless flexible strip footing
bonded to a transversely isotropic multilayered half-plane. The analytical layer-element solution for a
transversely isotropic multilayered half-plane in the Fourier transform domain is first introduced for the later
derivation. A pair of dual integral equations of contact stress and deflection is derived by virtue of the preceding
solution and the mixed boundary conditions. By means of the classic plate theory and Jacobi orthogonal
polynomials, the dual integral equations are further converted to a system of linear equations. Comparisons
with existed solutions confirm the accuracy of the proposed method. More examples are given to illustrate the
influence of relative rigidity ratio, transversely isotropy, double-layered characters and stratification on the
vertical impedance and the contact stress.

1. Introduction

The contact problem between a plate and an elastic isotropic or
orthotropic medium plays an important role in the study of soil-
structure interaction. Its dynamic response is also significant to the
study of seismology, earthquake engineering, machine vibrations and
dynamic hardness testing, so a considerate amount of work has been
done. Bycroft [1] and Robertson [2] studied the vertical dynamic
response of a rigid disc resting on an elastic half-space. Later, Lysmer
and Kuhlemeyer [3] investigated the displacement function of a rigid
circular disc resting on or partially embedded in an elastic half-space.
The steady motion of a rigid strip bonded to an elastic half-space could
be found in Oien [4]. Luco and Westmann [5,6] analyzed the dynamic
response of a rigid circular footing and a rigid strip footing bonded to a
half-space, respectively. Soon afterwards, Luco [7] gave the impedance
function for a rigid plate on a layered elastic medium. Besides,
Hryniewicz [8] presented the dynamic contact stress distribution of a
rigid strip on an elastic half-space. Pak and Gobert [9] considered the
vertical vibration of a rigid disc with arbitrary embedment in an
isotropic half-space.

However, the assumption of the plate being rigid is not always valid
and the rigidity of the plate cannot be neglected in real cases, so the
vibration of flexible plates has been widely discussed. Oien [10] studied
the time-harmonic response of a flexible strip foundation on an elastic
half space. The dynamic response of flexible rectangular foundation on

an elastic half-space was carried out by Iguchi and Luco [11]. Schmidt
and Krenk [12] investigated the vibration of an elastic circular plate
with an elastic half-space by integral equation method with a trigono-
metric expansion. A series of studies related to vibrations of flexible
strips on a half-plane have been presented by Karabalis and Beskos
[13], Spyrakos and Beskos [14], Gaitanaros and Karabalis [15] by a
hybrid BEM-FEM technique. Later, Spyrakos and Xu [16] further
studied the vertical vibration of flexible strips embedded in layered
elastic medium by the hybrid BEM-FEM. Riggs and Waas [17] studied
the influence of circular plate's flexibility on a layered stratum.
Gucunski and Peek [18,19], Gucunski [20] solved the dynamic
response of a circular flexible foundation on layered soil media. Bu
[21] put forward the impedance function of square foundations
embedded in an incompressible half-space. Mukherjee [22] studied
forced vertical vibration of an elastic elliptic plate on an elastic half-
space using orthogonal polynomials. Chen and Hou [23,24] used modal
analysis to evaluate a circular flexible foundation under vertical,
horizontal and rocking vibration.

The papers mentioned above mainly focus on the isotropic elastic
medium, however, the effect of the soils’ anisotropy should be taken
into consideration to simulate the real situation. Soils in geotechnical
engineering generally take on transversely isotropy and stratification
due to long-term sedimentation processes. As for the soil-structure
interaction problems, Gazatas [25] presented a semi-analytical for-
mulation to study the dynamic response of rigid strip footing supported
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on the surface of layered cross-anisotropic soils. Kirkner [26] devel-
oped an analytical solution for the forced vibration of a rigid surface
disc on a constrained transversely isotropic elastic half-space.
Eskandri-Ghadi et al. [27,28] investigated the vertical vibration of a
rigid circular disc attached to and buried in a transversely isotropic
half-space by Green's function method. Later, Eskandri-Ghadi et al.
[29] extended their solutions into a multilayered half-space. Lin et al.
[30] proposed the precise integration method for the dynamic stiffness
matrices of a rigid strip footing resting on an arbitrary anisotropic
layered stratum.

Recently, Ai and Liu [31] studied the axisymmetric vibration of an
elastic circular plate bonded on a transversely isotropic multilayered
half-space. However, the study on the dynamic response of a flexible
plate on a transversely isotropic multilayered half-plane is still limited,
so this paper focuses on the vertical vibration of a massless flexible
strip footing bonded to a transversely isotropic multilayered half-plane
for further study. In this paper, the analytical layer-element solution
for the multilayered half-plane [32] is first introduced. By the applica-
tion of the preceding solution and the mixed boundary conditions, a
pair of dual integral equations of the contact stress and deflection is
derived. By means of the classic plate theory and Jacobi orthogonal
polynomials, the dual integral equations are further converted to a
system of linear equations. Selected numerical results are performed to
demonstrate the accuracy of present method, and to discuss the
influence of relative rigidity ratio, material anisotropy and stratifica-
tion. This paper provides mathematically rigorous results and offers a
better understanding of the essence of the studied problem.

2. The analytical layer-element solution for a multilayered
half-plane

In a Cartesian coordinate system, defined that the z-axis is normal
to the plane of isotropy, an n-layered transversely isotropic elastic soil
system with an underlying half-plane is illustrated in Fig. 1. The
thickness of the ith layer is h H H= −i i i−1, where Hi and Hi−1 are the
depths from the surface to the bottom and top of the ith layer,
respectively. Evi, Ehi and Gvi are the vertical Young's modulus, hor-
izontal Young's modulus and shear modulus of the ith layer, respec-
tively. μvhi and μhi are the Poisson's ratios characterizing horizontal
strain due to stress acting parallelly and normally to the plane,

respectively. In addition, ρi denotes the density of the ith layer. An
arbitrary time-harmonic distributed load p x H e( , )i ωti of width b2 is
applied at the depth of Hi, where ω is the circular frequency and t is the

time variable.
The analytical layer-element solution for the multilayered half-

plane has been derived by Ai and Zhang [32], in which detailed
definitions for the symbols used in the following derivation can be
found. Let σz represents the normal stress components in the z
direction; τxz stands for the shear stress component in the planes xz;
ux and uz are the displacement components in the x and z directions,
respectively. Stresses and displacements in this paper are time-harmonic,
so the stress and displacement components can be expressed in the form of
u x z t u x z e( , , ) = ( , )x x

ωti , u x z t u x z e( , , ) = ( , )z z
ωti , σ x z t σ x z e( , , ) = ( , )z z

ωti ,
and τ x z t τ x z e( , , ) = ( , )xz xz

ωti . For brevity, the harmonic time factor e ωti is
suppressed from all expressions in this paper.

The whole problem is discussed in the Fourier transform domain.
According to Sneddon [33], the Fourier transform with respect to the
variable x and its inversion are defined as:

∫u u σ τ
π

u u σ τ e x( , , , ) = 1
2

(i , , , i ) dx z z xz x z z xz
ξx

−∞

+∞
−i

(1a)

∫u u σ τ u u σ τ e ξ( , , , ) = (−i , , , −i ) dx z z xz x z z xz
ξx

−∞

+∞
i

(1b)

where ξ is the Fourier transform parameter with respect to the variable
x, and i = −1 .

In order to simplify the analysis, two variables are defined as
follows:

ξ z u ξ z u ξ zU( , ) = [ ( , ), ( , )]x z
T (2a)

ξ z τ ξ z σ ξ zV( , ) = [ ( , ), ( , )]xz z
T (2b)

The solutions for a single layer with a finite thickness and a half-
plane are given in the following matrix form:

⎡
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⎤
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⎡
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⎤
⎦⎥

ξ
ξ z

ξ z
ξ
ξ z

V
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− ( , 0)
( , )

= ( , )
( , 0)
( , ) (3a)

ξ z ξ z ξ zV K U[− ( , )] = ( , )[ ( , )]h (3b)

where ξ zK( , ) and ξ zK ( , )h are symmetric matrices of order 4 × 4 and
2 × 2. The analytical layer-element associates the displacements and
stresses of z = 0 and arbitrary depth z in the Fourier transformed
domain. The critical analytical details of the explicit forms of the layer-
element are given in Ref. [32].

By applying Eq. (3a) to each finite layer and Eq. (3b) to the
underlying half-plane, the global stiffness matrix of the multilayered
half-plane in the Fourier transform domain can be assembled in the
form of:

where ξ H ξ H ξ H ξ H ξ HU U U U U[ ( , ), ( , ),…, ( , ),…, ( , ), ( , )]i n n0 1 −1
T is the

unknown displacement vector in the Fourier transformed domain;
ξ hK K= ( , )i i and Kh represent the analytical layer-element of the ith
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