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A B S T R A C T

The discrimination of microseismic events and quarry blasts has been examined in this paper. To do so, Principal
Component Analysis (PCA) and Artificial Neural Networks (ANN) have been used. The procedure proposed has
been tested on 22 seismic parameters of 1600 events. In this work, the PCA has been used to transform the
original dataset into a new dataset of uncorrelated variables. The new dataset generated has been used as input
for ANN and compared to Logistic Regression (LR), Bayes and Fisher classifiers, which classify microseismic
events and quarry blasts. The results have shown that PCA is effective for rating variables and reducing data
dimension. Furthermore, the classification result based on PCA has been better than those based Ref. [22] and
without PCA methods. Moreover, the ANN classifier has obtained the best classification result. The Matthew's
Correlation Coefficient (MCC) results of the PCA, Ref. [22] and without PCA based methods have reached
89.00%, 73.68% and 82.04%, respectively, thus showing the reliability and potential of the PCA based method.

1. Introduction

Microseismic monitoring, an efficient regional monitoring tool that
takes advantage of microseismic signals from rock deformation, has
been widely used in disaster monitoring and mining hazard prediction
[1,2]. Its main technical concerns include monitoring planning, data
processing and microseismic event location [2]. Microseismic event and
quarry blast classification is a key issue in microseismic data processing
[3–5].

Many microseismic monitoring systems have been equipped with
automatic microseismic data classification modules, such as that of the
Institute of Mine Seismology (IMS), that of the Engineering Seismology
Group (ESG) and that of the Seismological Observation System (SOS).
Nevertheless, microseismic data are often adversely influenced by
background and stationary noises [6], discontinuous transmission
media and transmission distance, which make the classification results
of these monitoring systems unreliable. Therefore, microseismic classi-
fication is still conducted mainly visually by experts in practice. Manual
discrimination is time consuming and subjective due to the fact that
depends on the analysts’ experience [7]. Therefore, large volume of
microseismic data requires a reliable and automatic microseismic
identification method.

In this paper, an algorithm based on Principal Component Analysis
(PCA) and Artificial Neural Networks (ANN) has been proposed. In
addition to previous works, this paper has introduced some new
parameters into microseismic classification and has considered the
correlation between variables. The performance of the PCA-ANN
method has been applied to 22 seismic parameters of 1600 events
selected from the Yongshaba mine (China) and compared to Logistic
Regression (LR), Bayes and Fisher classifiers. The results have shown
that the PCA is effective in rating variables and reducing data
dimension. Moreover, it has been shown that the parameters E0, Ep,
Es, M0, Mw, P, Pp, Ps, σa, fc, r0 and Δσ (see Section 3) are paramount for
microseismic classification. The ANN classifier has obtained a better
classification result than the LR, Bayes and Fisher classifiers. The
Matthew's Correlation Coefficient (MCC) results of the PCA, Ref. [22]
and without PCA based methods have reached 89.00%, 73.68% and
82.04% respectively, thus showing the reliability and potential of the
PCA based method.

2. State of the art

In order to distinguish seismic events from man-made explosions,
such as quarry blasts, underwater explosions and nuclear tests, different
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parameters and classification techniques have been proposed. These
methods select some parameters to replace seismic data. Then, these
parameter-vectors are used as input in statistical or machine learning
methods for classification. The parameters commonly used include
amplitude peak ratio of seismic phases [8–10], spectral ratio of seismic
phases or average amplitude in low and high frequency bands for a
specific phase [9–13]. The statistical and machine learning methods are
Gaussian maximum-likelihood classifier [14,15], neural networks
[4,16–19], self-organizing map [20,21] and Bayes classifier [7,22,23].

Most of the above researches focused on the classification of
earthquake and man-made explosions. Nonetheless, usually the micro-
seismic event has a higher frequency than that of an earthquake and is
more likely to quarry blast. This makes hard to distinguish microseismic
events from quarry blasts using waveform spectrum analysis.
Malovichko [24] selected time of occurrence, similarity of the seismic
signals to the neighboring waveforms, ratio of high-frequency and low
frequency radiation, and radiation pattern as microseismic discrimina-
tion factors. Later, he applied a multivariate maximum likelihood
Gaussian classifier technique for the classification. Vallejos and McKin-
non [19] examined the identification of seismic records in two
seismically active mines in Ontario (Canada). They considered LR
techniques and neural network classification techniques. Finally, 13
seismic parameters provided by the ESG system were selected as
classification features. Ma et al. [23] proposed two feature-extraction
approaches: source parameters and waveform characteristics. They
applied Bayes discrimination analysis to the characteristic parameters
extracted. Zhao et al. [25] selected the repetition of waveforms, tail
decreasing, dominant frequency and occurrence time of day as dis-
crimination features. They obtained a high correct discrimination rate
for the statistical model by applying the Fisher discrimination analysis.
Dong et al. [22] applied Fisher classifier, naive Bayesian classifier and
LR to discriminate microseismic events from quarry blasts. The origin
time of seismic records (t), seismic moment (M0), total radiated energy
(E0), S-wave to P-wave energy ratio (Es/Ep), corner frequency (fc) and
static stress drop (△σ) were selected as discrimination factors. Dong
et al. [26] improved the Dong et al. [22]. To do so, they used logistic
and log-logistic distributions to establish probability density functions
for the origin time of blasts and the Origin Time Difference (OTD) of
neighboring blasts in the time domain. All the aforementioned micro-
seismic event and quarry blast classification methods obtain good
results in general terms. However, all of them share same features that
they have not considered the importance of each parameter in micro-
seismic classification and the correlations between variables which
usually leads to poorer results.

3. Methodology

This section describes the improved method for microseismic event
and blast classification. Fig. 1 illustrates the process of the methodol-
ogy.

(1) Set of inputs: it is worth noting that the classification problem has
been turned into a binary problem. The microseismic events have
been labeled with a 1, while the blasts have been labeled with a 0.
The variables E, N, D, △r, t, Ns, M0, Mw, E0, Es/Ep, r0, △σ, σa and

△σd introduced by Vallejos and McKinnon [19] and AV, fc, Ep and
Es described in Ref. [22] have been selected as microseismic
classification features. In addition, P, Pp, Ps and Ps/Pp have also
been chosen as classification input features, where P πcR= 4 Ω

Fc
0 is

the total potency of P- and S-waves, Ps/Pp is the S-wave to P-wave
potency ratio, c is the velocity of the wave in rock (m/s), R is the
distance from the seismic source (m), Ω 0 is the low-frequency
plateau of the frequency spectrum of a seismic waveform in the
displacement. Fc is the radiation pattern parameter: for a P wave Fc
is 0.52, while for an S wave Fc is 0.63 [27].

(2) Principal Component Analysis (PCA): PCA has been applied to
study the importance of each parameter to microseismic classifica-
tion. Furthermore, the original data has been transformed into a
new dataset of uncorrelated variables with dimensionality reduc-
tion, which results in less number of input variables for the ANN
classifier and reduces the classification computing time.

(3) Application of machine learning classifiers: ANN has been selected
to classify microseismic events and quarry blasts. The results of LR,
Bayes and Fisher classifiers have been provided for comparison.

(4) Assessment: evaluations of the prediction performances by means of
a variety of quality parameters (see Section 3.2), and discussions of
the advantages and limitations for these classifiers.

3.1. Principal Component Analysis

PCA is one of the most useful statistical methods to transform a large
dataset of interrelated variables into a smaller dataset of uncorrelated
variables, namely Principal Components (PCs). The PCs can be ex-
pressed in terms of linear combination of the original variables, which
retain the maximum information from the original data. In order to
avoid the asymptotic effect, the input data should be normalized. The
commonly used normalization strategies are Min-Max scaling and Z-
score standardization, however, the Principal Component Analysis will
ignore the variable information with low standard deviation. Therefore,
the latter strategy is selected to eliminate the effect of standard
deviation and it is defined as follows [28]:

x x x σ′ = ( − )/ij ij j j (1)

where x ′ij is the ith value of the standard score of the j-variable (i=1, 2,
…, n and j=1, 2,…, m), xij is the ith value of the j-variable, and xj and σj

are the mean value and the standard deviation of the j-variable,
respectively.

The eigenvalues and eigenvectors of correlation matrix R can be
obtained from the Eqs. (2) and (3) as follows:

λR I− = 0 (2)

λR e e= (3)
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is the ith value and jth variable of the R-matrix, λ is the eigenvalue
(λ λ λ≥ ≥ ⋯ ≥ ≥ 0m1 2 ), e is the eigenvector, and I is the identity matrix.

The ith value and jth variable of the principal component load
matrix and the jth variance of PCj are given as:

l λ e=ij j ij (4)

∑λ λVariance = /j j
j

m

j
=1 (5)

Then, the principal component PCj can be reconstructed by:

l x l x l xPC = + + …+j j j jm m1 1 2 2 (6)

The first, PC1, corresponding to λ1 represents the linear combination
of the variables, and accounts for the maximum variability in the data.
While the second, PC2, represents the maximum variability which is not
accounted by the PC1. This procedure is repeated m-times to obtain the
principal components PC3, PC4,…, PCm.

Fig. 1. Steps involved in the PCA based machine learning methodology. The green, light-
green, blue and light-blue correspond to step (1), (2), (3) and (4), respectively. (1) Set of
inputs; (2) Principal component analysis (PCA); (3) Application of machine learning
classifiers; (4) Evaluations and discussions. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)
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