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A B S T R A C T

A new algorithm is proposed to implement viscoelastic wave propagation in earth medium with surface
topography by introducing history variables into integral type GZB constitutive equations and by using the
recursive formulae of these history variables. Combining the proposed algorithm with the flexural wave
algorithm for frame structure and the algorithm for bidirectional wave propagation, a new type of integrated
method is developed for earthquake response analyses of near-fault building clusters in mountain city due to
rupture of causative fault. The earthquake responses of building clusters of frame structures situated at different
sites of a mountain in Chongqing city, China, are studied during a hypothetical Mw 6.2 near-fault earthquake.
The numerical results show that, for the multi-story buildings, the maximum peak value of beam-end bending
moments appears in the building on the hill top and the earthquake risk positions are mainly at the bottom and/
or the top of the buildings. For the high-rise buildings, the maximum peak value of beam-end bending moments
appears in the building on the mountainside and the earthquake risk positions are mainly at the bottom and/or
the middle of the buildings.

1. Introduction

The computational model of considering together the earthquake
source mechanism, earth medium and buildings in a city is a rational
model for studying the near-fault earthquake responses of buildings in
the city. To the best of our knowledge, by now, a few researchers [1–5]
adopted such type of integrated computational model to study the
earthquake response of city. Taborda [1] used a double-couple seismic
source, and Guidotti et al. and Isbiliroglu et al. [4,5] used the finite-
fault seismic source to study the earthquake responses of building
clusters. However, the building they used in the building clusters was
idealized as an equivalent low-velocity block, which is not very suitable
to be used to obtain the actual earthquake response of structure. Liu
et al. [2] used the finite-fault seismic source to study the near-fault
earthquake responses of building clusters. They adopted the elastic flat-
surface model of earth medium without considering the attenuation of
real earth medium and adopted the simple shear model (lollipop model)
for the multi-story building. Liu and Zhong [3] studied the earthquake
responses of near-fault building clusters of frame structures situated on
the flat surface of earth medium due to rupture of thrust fault. They
adopted the viscoelastic constitutive equations of the Generalized Zener
Body (GZB) with memory variables [6] to implement attenuation of

seismic waves. A wave-based method was proposed for simulating
flexural wave propagation in frame structures and a type of investigated
lump used for structure-soil connection was introduced to implement
bidirectional wave propagation between the structure and the earth
medium.

Many near-fault mountain cities suffered severe damage of building
structures during earthquakes, for example, Santa Monica city (during
the 1994 Northridge earthquake) [7], Kobe city (during the 1995
Hyogo-ken Nanbu earthquake) [8], and Beichuan city (during the 2008
Wenchuan earthquake) [9]. But up to now, the near-fault earthquake
responses of building clusters in the mountain city by considering the
topography surface have not been studied by using the integrated
computational model.

The aim of this article is to study the earthquake responses of the
building clusters of frame structures in near-fault mountain city during
an earthquake. In Section 2, a new type of integrated method is
developed for studying earthquake responses of near-fault building
clusters in mountain city. The history variable type GZB constitutive
equations is given. Instead of the memory variable type GZB constitu-
tive equations used in our previous work [3], the history variable type
GZB constitutive equations is used for implementing attenuation of
seismic waves in earth medium. In Section 3, one numerical test has
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been performed to verify the validity and accuracy of the simulating
algorithm proposed in Section 2 for viscoelastic wave propagation in
earth medium. In Section 4, the integrated method presented in this
article is applied to study the near-fault earthquake responses of
building clusters located at different sites of the mountain in Yuzhong
district of Chongqing city, China, during a Mw 6.2 hypothetical earth-
quake.

2. Integrated method for simulating near-fault earthquake
responses of building clusters in mountain city considering
viscoelasticity of earth medium

2.1. Simulating algorithm for viscoelastic wave propagation in earth
medium

The dynamic equilibrium equations of the typical investigated lump
i in earth medium with mass Mi are as follows [3,10]
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where the meanings of the ni3, ni4, a*i , b*i , c*ir and d*ir are the same as
those in the literature [3]. The summations on the right-hand side of
Eqs. (1) and (2) are respectively the horizontal and vertical interior
forces acting on the investigated lump i.

In order to calculate the interior forces acting on the investigated
lumps in viscoelastic earth medium, the stresses should be calculated.
In this study we introduce history variables into the integral type GZB
constitutive equations and derive the recursive formulae of these
history variables in order to obtain the calculating formulae of stresses.

The convolution integral type GZB constitutive equations can be
given by [6]
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where the relaxation function ψ t( )v (v = 1, 2) for GZB is [6]
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and strain relaxation time corresponding to dilatational (v=1) and
shear (v=2) of the l th attenuation mechanism, L is the number of
relaxation mechanisms, Mv

R is the relaxed modulus (elastic modulus)
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to bulk modulus and shear modulus, respectively.
Introduce the history variables
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Substituting Eq. (4) into Eq. (3) and noticing Eqs. (5) and (6), the
history variable type GZB constitutive equations is given as follows:
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Assuming t t Δt= +0 in Eqs. (5) and (6) and using the middle point
rule in interval t t Δt[ , + ]0 0 , and then we have the following recursive

formulae of history variables
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For the plane strain problem, by discretizing the Eq. (7) at time
t Δt+0 and using Eqs. (8) and (9), we can obtain the calculating
formulae of stresses as follows:
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ficients χ l1 , χ l2 and relaxation frequency ω l in Eqs. (13) through (15)
can be obtained from constant-Q by means of the least squares
technique. We use L=3 in this study. u x∂ /∂ , w z∂ /∂ , u z∂ /∂ and w x∂ /∂ in
Eqs. (10) through (15) can be determined by using the spatial
derivatives of displacement for the triangular grid and quadrangular
grid [10].

The algorithm implementation for viscoelastic wave propagation in
earth medium with surface topography is a recursive evaluating
procedure in time domain as follows:

Step 1. Evaluate uï and ẅi at time t0 by using Eqs. (1) and (2).
Step 2. Evaluate ui and wi at time t Δt+0 by doing time integration
[10].
Step 3. Evaluate σx, σz and τxz at time t Δt+0 by using Eqs. (10)
through (12) and then go back to step 1 to evaluate uï and ẅi at time
t Δt+0 .

Calculating in cycle from step 1 to step 3, finally the numerical
algorithm for simulating viscoelastic wave propagation is obtained by
using the history variable type GZB constitutive equations.

2.2. Integrated method for earthquake response analysis of near-fault
building clusters

Combining the algorithm proposed in Section 2.1 for viscoelastic
wave propagation in earth medium with the algorithm for flexural wave
propagation in frame structure [3] and the algorithm for bidirectional
wave propagation between the earth medium and the building structure
[3], a new type of integrated method is developed for analyzing near-
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