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A B S T R A C T

The problem is formulated on the basis of Biot's theory and the analytical layer element method, and the global
stiffness matrix for the multilayered soil is established by combining continuity conditions of adjacent layers
and boundary conditions based on the analytical layer element for a single poroelastic saturated layer in the
Hankel transformed domain. Solutions in frequency domain are obtained by taking the Hankel inverse
transform. Selected numerical examples are performed to validate the correctness of the present method and to
discuss the influences of compressibility parameters of soil grain and pore fluid as well as the influence of soil
stratification on vertical displacement and pore pressure.

1. Introduction

The dynamic behavior of poroelastic saturated soils has been the
subject of intensive investigations for decades. Biot [1] developed the
theory of wave propagation in saturated media within the small strain
theory. Paul [2] studied the Lamb's problem in a saturated half-space.
Halpern and Christiano [3] solved the problem associating with the
saturated half-space due to a surface harmonic load by applying the
potential functions decomposition and Hankel transform.
Philippacopoulos [4,5] investigated the wave propagation and Lamb's
problem in partially saturated and fluid-saturated porous media, in
which the solid damping and viscosity of pore fluid were taken into
consideration. Senjuntichai and Rajapakse [6] and Rajapakse and
Senjuntichai [7] studied the dynamic response of a dissipative por-
oelastic half-plane and obtained solutions for a multilayered poroelas-
tic medium due to time-harmonic loads, respectively. Cai et al. [8]
obtained the fundamental solutions for single-layered isotropic satu-
rated soil with a subjacent rock-stratum subjected to harmonic
excitations. Lu and Hanyga [9] studied the fundamental problem of a
layered porous half space due to a vertical point force and a point fluid
source. However, none of them investigated the influences of Biot's
parameters for compressibility of two-phased soils.

This investigation aims to present the fundamental solutions for
multilayered poroelastic soils subjected to an axisymmetric harmonic

excitation and to study influences of Biot's compressibility parameters
and soil stratification property. The analytical layer element [10–12]
for a single soil layer (as shown in Fig. 1) is established with the aid of
Laplace-Hankel transform. The global stiffness matrix for the multi-
layered soil can be developed by combining continuity conditions of
adjacent layers and boundary conditions based on the analytical layer
element. Solutions for multilayered soil media in frequency domain are
derived by taking the Hankel inverse transform. Selected numerical
examples are performed to validate the accuracy of the present method
and to discuss the influences of compressibility parameters and soil
stratification.

2. Analytical layer element for a single poroelastic soil layer

The derivation of analytical layer element is based on the following
assumptions: a) the soil medium is elastic and isotropic; b) the study is
under small deformation assumption; c) the soil porosity is uniform;
and d) the interfaces of adjacent soil layers are assumed to be parallel
to the ground surface. The equilibrium equations of a poroelastic
medium are expressed as follows [13]
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where the over dot is the derivation with respect to t; μ, λ, ρ are the
shear modulus, Lame's constant, density of the bulk material, respec-
tively; ρf is the density of pore water; α and M are the Biot's parameters
accounting for compressibility of soil grain and pore fluid; u, w, vr, vz are
the displacement components of soil grain and pore fluid in r and z
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The balance equations of fluid motion and the seepage continuity
equation are given as follows [13]
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αMe Mς p− = − (3)

where b η k= /0 , η nρ g= f0 , m ρ n= /f ; η0, k , n denote pore fluid viscosity,
soil permeability and porosity; p denotes pore pressure (p is consid-
ered positive when the force acting on the fluid is a pressure).

Due to constitutive equations and principle of effective stress [10]
as well as Hankel transform [14], we obtain
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ξ z u w pW( , ) = [ ]T; u , w , p are the Hankel transforms of u, w, p;
δ ρ g k= /f , ξ is the Hankel transform parameter with respect to r; σrz, σz,
Q are the Hankel transforms of σrz,σz, Q, which denote the shear stress
in the plane r-z, the total normal stress of solid matrix and flow
quantity through unit cross section area in z direction.

The motion in this investigation is assumed to be time-harmonic.
With the application of Hankel transform with respect to r and Laplace
transform with respect f to z [14], Eqs. (1), (3) are written in matrix
form as

ξ sAW BY( , ) = (5)
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2 ,
b a αMa= +2 1 2, b M α a= ( + )3 2 , c μ b= +1 2, c μ b= −2 2, l s ξ= −2 2;
c ωb mω= 1/(i − )2 , ω is the circular frequency; u∼, w∼, p∼ are Laplace
transforms of u , w , p ; s is the Laplace transform parameter with

respect to z.
Applying the inversion of Laplace transform with respect to s to Eq.

(5), we have
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where U is the matrix of order 3 × 6, which is divided into U1 and U2 of
order 3 × 3.

According to Eq. (6), we have the following relationship in matrix
form
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where I, 0 are unit matrix and zero matrix of order 3 × 3, respectively.
Combining Eq. (4) and Eq. (6) leads to
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where T1 and T2 are matrices of order 3 × 3 and M is a matrix of order
6 × 6.

Combining Eqs. (7) and (8) leads to

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

ξ
ξ z

ξ
ξ z

V
V

Φ W
W

− ( , 0)
( , )

=
( , 0)
( , ) (9)

where Φ MN= −1 is a matrix of order 6 × 6. Detailed elements of Φ are
provided in Appendix A.

3. Solutions of multilayered poroelastic soils

In this paper, an n-layered soil media system with a depth Hn is
considered as shown in Fig. 2. The interfaces at the depths
H i n( = 1,…, )i are assumed to be perfectly bonded; the surface of the
multilayered soil media is supposed to be free and permeable; the
bottom is considered to be fixed and impermeable. Therefore, the final
global stiffness matrix for the multilayered soil is established as [10].

Fig. 1. Generalized stresses and displacements of a single layer with a finite thickness.

Fig. 2. Multilayered isotropic poroelastic soils subjected to a time-harmonic excitation.
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