Soil Dynamics and Earthquake Engineering 94 (2017) 83-87

journal homepage: www.elsevier.com/locate/soildyn

Contents lists available at ScienceDirect

Soil Dynamics and Earthquake Engineering

EARTHQUAKE
ENGINEERING

Resistance of inner soil to the vertical vibration of pipe piles

@ CrossMark

Changjie Zheng®"*, Hanlong Liu®", Xuanming Ding®", George Kouretzis®

@ Key Laboratory of New Technology for Construction of Cities in Mountain Area (Chongqing University), Ministry of Education, Chongqing 400045, China

® School of Civil Engineering, Chongqing University, Chongqing 400045, China

© ARC Centre of Excellence for Geotechnical Science and Engineering, Faculty of Engineering and Built Environment, The University of Newcastle, Callaghan,

NSW 2308, Australia

ARTICLE INFO ABSTRACT

Keywords:

Pipe pile

Soil resistance
Inner soil
Analytical solution

The resistance offered by the inner soil to the vertical oscillation of an end-bearing pipe pile is studied
analytically. The differences in the resistance to pile vibrations associated with the inner soil and the outer soil
are underlined via example applications and theoretical considerations. Simplified, reduced solutions are also
derived, to further investigate the wave propagation mechanisms governing the problem.

1. Introduction

The cornerstone of quantifying the dynamic response of a pile is the
calculation of the dynamic resistance of the soil layers to the vibration
of the pile. Various researchers have delved into this, following
different approaches. For example, Parmelee et al. [1] used a non-
linear discrete model to describe the dynamic stress and displacement
fields of the soil. Novak [2] proposed the plane strain solution, in which
soil is modeled as a series of homogeneous infinitesimally thin layers
while ignoring vertical strains, and derived solutions for the frictional
resistance of soil to pile vertical movements. Nevertheless, the soil
vertical stress gradient in Novak's solution is neglected, which suggests
that soil-pile interaction is considered only in the horizontal direction,
and waves propagating in the vertical direction are ignored.

Later, Nogami and Novak [3] refined the three-dimensional con-
tinuum model to account for the soil stress gradient in the vertical
direction. This model considers longitudinal waves propagating along
the pile, and is certainly more rigorous than the plane strain solution
[2]. However, the radial displacement of the soil associated with the
vertical vibration is ignored, which suggests that vertically propagating
shear waves are again omitted from the solution. To consider both
vertical and radial displacements, Wang et al. [4] and Wu et al. [5]
introduced two potential functions to decompose the displacements of
soil. In this way, both the shear and longitudinal vertically propagating
waves are considered, resulting in the true three-dimensional solution.
Wang et al. [6] compared the soil frictional resistance factor obtained
by their three-dimensional solution against the results of Novak [2] and
Nogami and Novak [3]. They observed that there exists a secondary
resonance frequency in each mode besides the dominant one found by
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Nogami and Novak [4]. This secondary resonance frequency is induced
by the shear waves generated by the radial motion of soil.

The aforementioned studies all concern solid piles. Large diameter
pipe piles, such as prestressed concrete pipe piles, large diameter steel
pipe piles and large-diameter cast—in situ concrete pipe piles, are now
widely used in practice [6,7]. The dynamic response of a pipe pile is
different from that of a solid pile due to the existence of soil in the
cavity formed by the pipe pile (i.e. inner soil). The resistance of the
inner soil to the dynamic displacements of a pipe pile is also of great
importance for quantifying the dynamic characteristics of the soil-pipe
pile system. This note presents a study on the determination of the
frictional resistance of the inner soil to the vertical vibration of an end-
bearing pipe pile. Simplified, reduced solutions are also derived to
investigate the error induced in the solution if we ignore the radial
displacement and the vertical stress gradient of the inner soil.

2. Basic assumptions and conceptual model

The main simplifications introduced follow Nogami and Novak [3],
and are as follows: (1) The inner soil consists of a linear viscoelastic
layer, overlying a rigid base. (2) No normal stresses act on the free
surface of the inner soil layer, and no vertical displacements occur at
the bottom of the soil layer. (3) The cavity inside the pipe pile is
assumed to be fully filled with soil. (4) The end-bearing pile is elastic,
and remains in perfect contact with soil. Only the vertical displacement
of the pile is considered, and the radial displacement at the pile—soil
interface is assumed negligible. (5) The deformation of the pipe pile—
soil system is small.

The conceptual model is shown in Fig. 1. A uniform vertical
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Fig. 1. Conceptual model of the end-bearing pipe pile—soil simplified system.

pressure pe'®? is applied on the pile head. H is the pipe pile length and
r1, > are the outer and inner radii of the pipe pile section, respectively.
Moreover, with f we denote the frictional force developing at the inner
soil-pipe pile interface.

3. Governing equations and their closed-form solution

To start with, note that the solution for the outer soil of a pipe pile is
essentially the same as that for the soil surrounding a solid pile, and is
given in Nogami and Novak [3] and Wang et al. [4]. The following
solution concerns only the reaction of the inner soil. The governing
equations of the inner soil by considering both vertical and radial
harmonic displacements can be written as:

(G + iG’)(V2 - %)u,. +[A+G)+i(d + G’)J% = pii,

1
0
(G +iGYVu, + [(A + G) + iV + G = pii,
0z @
2 2 Uz . .
where V2 = & 4 19 4 0., 0 w4 % g the volumetric strain of
or ror 9z or r 9z

the inner soil; u, and u, are the radial and vertical displacements of the
inner soil, respectively; 1 and G are the Lame's constants; ' and G’ are
the damping; p is the density.

The vibration of the pile—soil system is assumed to be harmonic
with a factor el®?, where @ is the cyclic frequency. The term el®? is
suppressed from all the following expressions for brevity.

Performing the differentiation %) + (rﬂ + %2) on Egs. (1) and (2)
yields: i

[(A+2G) +i(X +2G)]VPe + pw’e =0 3)

The general solution of Eq. (3) can be determined using the variable
separation method:

e = [A; sin(g2) + By cos(g2)1[GKo(g,r) + Dily(g,r)] 4

2

2 2 2. 2 _ P . .
where ¢ + B =g B = 7(“20)“(1420’)’100 and K,() are modified
Bessel functions, respectively; A;, B;, ¢ and D; are undetermined
coefficients.

The boundary conditions of the inner soil are expressed as:

o =0 =0 ®)
ey = (6)
Upl—g < © @]
Uplyeyy = 0 (8)
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Substituting Eq. (4) into Egs. (5) and (7), we obtain:

B =0 ©)
G=0 (10)
Then the volumetric strain e can be expressed as:
e = Aly(gq,r)sin(gz) (11)
Substituting Eq. (11) into Egs. (1) and (2), we obtain:
G+ I'G/)(VZ - riz]u,. +po*u, =[A+G)+i(M + G')]A1q,K (q,r)sin(g z)
(12)
(G + iG)VPU. + pwU. = —[(A + G) + i (X' + G)1AigKo(q,r)cos(g2)
(13)

The general solution of Eq. (12) can be determined by using the
variable separation method:

u, = [A; sin(g,2) + By cos(g,2)1[C2Ki1(g,7) + D21i(g,7)] 14
2
where g; + 8} = g5 B} = G’; = A, By, C; and D, are undetermined

coefficients.
The particular solution of Eq. (12) is assumed as:

) = 1 AKi(g)sin(g2) 15)
Substituting Eq. (15) into Eq. (12) yields:
A+ G)+i(d +G)]
LT T e — (G + iGHBE (16)

The displacements and stresses of the inner soil at r=0 are
bounded, thus

G =0 a7
The solution of Eq. (12) can then be written as:

u, = [A; sin(g,2) + Bs cos(8,2)111(q,7) + %A sin(g2) i (gq,r) 18)
Similarly, the solution of Eq. (13) can be obtained as:

u; = [As sin(gz2) + Bj cos(g32) 1o (g3r) + A1 cos(g2)lo(g,r) 19)

glA+G)+i(A"+GN],

where g2 + 2 =g2; 5 = A; and B; are undeter-
3 + /2 85 X (G+iG')ﬁ12—pa)2 > A3 3

mined coefficients.
Taking into account the definition of the volumetric strain

e=%+%"+%weobtain:

L=8 h=4¢ (20)

Argy = B3gs,  Bagy = —Asg; 21
Substituting Eq. (19) into Egs. (5) and (6) yields:

Ay =0 (22)

g1n=g3,,=gn=%an= 1,2,3, 23)

Then the radial and vertical displacements of the inner soil can be
expressed as:

00

w=3

8 .
|:}(1y,AlnIl (qlnr) + B3nq_nll (Chn”)]sm (g,,Z)

N " 4
;= Y UnyAino(q1,7) + Banlo(g,7)1c05(3,2)
n=1 (25)
Substituting Eq. (24) into Eq. (8) yields:
B3Vl = énAIn (26)
where &, = —%n%1r2)

enli(ayr)
The vertical displacement of the inner soil at the pile—soil interface

can be written as:
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