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A B S T R A C T

Previous research has produced valuable results on the transient dynamic response of tunnels buried in full-
space. However, a half-space model is of more practical interest because tunnels normally have finite buried
depths. In this paper, the dynamic response of a lined tunnel is studied where the surrounding soil is described
using Biot's theory and the lining is described by the theory of elastodynamics. The half-space straight boundary
is approximately represented by a convex arc of large radius. In accordance with Graff's addition theorem, the
general solutions in a rectangular coordinate system are converted to ones in a polar coordinate system. The
solutions for displacements and stresses of both the soil and the lining as well as the pore pressure of the soil in
the Laplace transform domain are derived based on boundary conditions. Time domain solutions are then
obtained by the use of inverse Laplace transform. Numerical results are presented showing the distributions of
peak values of ground displacements, stresses and pore pressures of the soil.

1. Introduction

Underground lined structures are sometimes subjected to transient
dynamic loadings such as hydraulic fracture initiation, blasting loading
and sudden excavations, which can be simplified as a suddenly applied
constant load, a gradually applied step load or a triangular pulse load.
These transient loadings may cause failure of the underground
structures and their surrounding soil. Therefore it is very important
to investigate the stress and displacement of the lined structure and the
soil under the transient loadings.

Previous research has produced valuable results on the transient
dynamic response of underground structures. Senjuntichai and
Rajapakse [1] obtained transient solutions of a long cylindrical cavity
induced by a suddenly applied constant load, a gradually applied step
load and a triangular pulse load. The cavity was assumed to be buried
in an infinite poroelastic medium and not to be lined. Kattis et al. [2]
obtained numerical solutions for dynamic response of both the unlined
and lined tunnels in an infinite poroelastic saturated soil under a
harmonic wave diffraction by the boundary element method. Xie et al.
[3] studied dynamic response of a partially sealed circular tunnel in
viscoelastic saturated soil. Osinov [4] investigated the dynamic re-
sponse of saturated granular soil induced by a blast loading on a tunnel

lining. Gao et al. [5] obtained an analytical solution for transient
response of a cylindrical lined cavity in a poroelastic medium. Wang
et al. [6] investigated the influence of the degree of saturation on
dynamic response of a cylindrical lined cavity in a nearly saturated
poroelastic medium. Gao et al. [7] presented an exact solution for
three-dimensional dynamic response of a cylindrical lined tunnel in
saturated soil to an internal blast loading. All of these studies assumed
the tunnel to be buried in a full-space, whereas a half-space model
apparently is of more practical because tunnels always have finite
buried depths.

In this paper, the governing equations of the soil surrounding a
lined tunnel are given based on Biot's theory in a rectangular
coordinate system, and the governing equations of the lining are
presented based on the conventional theory of elastodynamics. The
general dynamic solutions of both the surrounding soil and the lining
are then obtained by the use of Laplace transform. A large radius arch
is used to approximately represent the free surface boundary of the
half-space. Then the general solutions in the rectangular coordinate
system are transformed into solutions in the polar coordinate system
by applying Graff's addition theorem [8]. By matching boundary
conditions, the special solutions are derived. The peak value of ground
displacement, hoop stress in the lining and pore pressure distribution
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between the lining and the surrounding soil in time domain are
obtained by numerical inverse Laplace transform.

2. Governing equations

As shown in Fig. 1, a circular tunnel with infinite length is buried at
the depth of h1 in a saturated half-space. The outer and inner radii of
the tunnel are a1 and a2, respectively. The inner surface of the lining is
subjected to three types of transient loading (see Ref. [5]).

Treating the soil as a fluid-saturated poroelastic medium, the
equilibrium equations of soil skeleton and the fluid are as follows:

λ α M G u G u αMw ρu ρ w i j x y( + + ) + + = ̈ + ̈ , = ,s s j ji s i jj j ji i f i
2

, , , (1)

αMu Mw ρ u ρ w bw i j x y+ = ̈ + ̈ + ̇ , = ,j ji j ji f i m i i, , (2)

where λs and Gs are Lamé constants of the saturated soil; α and M are
the Biot's coefficients; ui and wi are the displacement of the soil
skeleton and the displacement of the fluid relative to the solid; ρ is the
mass density of saturated soil, ρ=(1-nf)ρs+nf ρf, nf is porosity of soils,
ρf and ρs are respectively the mass density of pore fluid and solid
skeleton; b is the fluid viscous coupling coefficient; ρm is the fluid
additional mass density, ρm=(nf ρf+ρa)/nf

2, ρa is the mass density
induced by fluid coupling.

By introducing potential functions：

u φ e ψ w φ e ψ= + , = +i i ijk k j i i ijk k j1, 1 , 2, 2 , (3)

where φ r θ( , )1 1 1 , ψ r θ( , )1 1 1 and φ r θ( , )2 1 1 , ψ r θ( , )2 1 1 are the potential
functions of soil skeleton and the fluid, respectively; eijk is the
permutation tensor in rectangular coordinates.

Substituting Eq. (3) into Eqs. (1) and (2), the equilibrium equations
as follows:
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ρ φ e ψ
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αMφ Mφ ρ φ e ψ m φ e ψ
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Applying Laplace transform to both sides of Eqs. (4) and (5),
denoting φ L φ= [ ]1 1 , φ L φ= [ ]2 2 , ψ L ψ= [ ]1 1 , ψ L ψ= [ ]2 2 as the Laplace
transform of φ r θ( , )1 1 1 , φ r θ( , )2 1 1 , ψ r θ( , )1 1 1 , ψ r θ( , )2 1 1 , the governing
equations of the soil can be written as (the non-dimensionalized
quantities with respect to length and time by selecting the inner radius
of the tunnel a2 as a unit of length and a2(ρ/Gs )

0.5 as a unit of time, see

Ref. [5]):
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0.5], t is time.

Following the procedures in Gao et al. [5], the general solutions of
the governing Eqs. (6)–(7) can be derived as:

φ B s I β r B s K β r φ C s I β r C s K β r= ( ) ( *) + ( ) ( *), = ( ) ( *) + ( ) ( *)1 3 0 3 4 0 4 2 3 0 3 4 0 4

(8)

ψ D s K β r ψ m ψ m ρ s ρ s b s= ( ) ( *), → = , = −( * )/( * + * )m1 5 0 5 2 7 1 7
2 2 (9)

where B3(s), B4(s), C3(s), C4(s) and D5(s) are undetermined coeffi-
cients, I0 and K0 are the modified Bessel functions of the first and
second kinds of order 0, respectively; s is the Laplace transform
parameter; β3, β4, β5 are the dimensionless wave numbers associated
with the two dilatational waves and shear wave, respectively. They can
be written as follows:
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The lining of the cavity is treated as an elastic medium. The
governing equations can be obtained as follows by linear elastic wave
theory,

Gu λ G u ρ u+ ( + ) = ̈i jj
L

j ji
L

L i
L

, , (12)

where λ and G are respectively the lining elastic constants; ρL is the
mass density of the lining; ui

L and uï
L are respectively the lining

displacement and acceleration.
Similarly, the general solutions of the lining can be written as:

φ A s I β r B s K β r= ( ) ( *) + ( ) ( *)6 0 6 6 0 6 (13)

ψ A s I β r B s K β r= ( ) ( *) + ( ) ( *)7 0 7 7 0 7 (14)

where A6(s), A7(s), B6(s) and B7(s) are the undetermined coefficients;
β6, β7 are the dimensionless wave numbers associated with the
compression wave and shear wave and can respectively be expressed
as β6

2=s2(c*)2 and β7
2=s2(cs

*)2, in which (c*)2=(λ*+G*)/ρL
*, (cs

*)2=G*/
ρL

*, λ*=λ/Gs, G*=G/Gs, ρL
*=ρL/ρ. Here c* and cs

* are the non-
dimensionalized velocity of compression wave and shear wave, respec-
tively.

3. Coordinate transformation

For the half-space straight boundary, the boundary is represented
as a convex arc with a large radius a3 (a3=6000 a2), as shown in Fig. 1.

Using addition theorem by Graff [8], a set of general solutions in the
rectangular coordinate system are transformed into solutions in the
polar coordinate system:

∑Z βr nθ Z βD J βr nθ r D( )cos( ) = ( ) ( )cos( ), ( < )n
n

n m m2 2
=−∞

∞

+ 1 1 2
(15)

where Zn(*) is the functions of In(*) or Kn(*); D is the distance between
two origins of the coordinate systems.
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Fig. 1. Analytical model and straight boundary in the half space model.
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