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A B S T R A C T

The diffraction of horizontally polarized shear waves by a semi-infinite wedge in frequency and time domains is
studied. In particular, this work focus on the performance of different solutions, including the classical
contributions from Macdonald, Sommerfeld and Kouyoumjian & Pathak. In addition, two fully analytical,
simplified solutions are proposed using arguments from the so-called geometrical theory of diffraction. The
main advantage of the two proposed solutions is the fact that the resulting solutions can be scaled to problems
with arbitrary and complex geometries. Moreover, it is found that one of the proposed new solutions is highly
efficient in terms of accuracy and computational speed as compared to alternative formulations (approximately
1000 times faster than the Macdonald and Kouyoumjian & Pathak solutions), thus, this important
characteristic renders this solution ideal for implementation in GPUs (Graphics Processor Units) for multiscale
modeling applications.

1. Introduction

The scattering of elastic waves by arbitrarily shaped surfaces that
generate geometric effects is important in many practical applications,
such as soil exploration when searching for natural sources, geotech-
nical applications, rock mechanics and earthquake engineering. For a
comprehensive literature review on the diffraction problem for wedges
and its applications the reader may consult the work by Jaramillo et al.
[1].

In this work, the performance of different solutions for a wedge-
shaped surface with incident, horizontally polarized, shear (SH) waves
is studied. The problem of elastic wave propagation in a wedge is
relevant from the viewpoint of the geometrical theory of diffraction
[2,3] because it allows for scaling to more complex problems from the
application of basic problems called “canonical problems” [1]; these
ideas have been widely used in other areas due to its scalability and
relative ease in numerical implementations and its sufficient accuracy
for engineering applications [4,5].

This paper is organized as follows. In Section 2, the geometric field
is briefly presented. In Section 3, the Macdonald exact solution in
series expansion in terms of Bessel functions for the total field of a
wedge is given. In Section 4, the Sommerfeld asymptotic solution, or
the Keller solution, is described, which is a non-uniform solution at
high frequency (k r ≫ 1s ) because it is not valid near the reflection and

transmission boundaries. In Sections 5, 6 and 7, the solution of
Kouyoumjian & Pathak and simplified solutions 1 and 2 are presented,
which are uniform solutions. The Sommerfeld (asymptotic),
Kouyoumjian & Pathak, and simplified solutions 1 and 2 are based
on the ideas of the geometrical theory of diffraction. Finally, a
comparative study of accuracy and computational performance of these
solutions is performed.

2. Geometric solution

First, a geometric description of the two-dimensional problem of a
plane harmonic SH wave falling on a clamped or traction-free wedge is
provided in this section. Fig. 1 shows the geometric solution, where the
discontinuity of the displacement field at the incident and reflection
boundaries can be observed.

Fig. 1 shows the three wedge-shaped regions defined by the half-
plane and the directions of the reflected and transmitted rays:

ϕ π ϕReflection region:0 ≤ ≤ − 0

π ϕ ϕ π ϕ π ϕ ϕ νπTransmission region: − ≤ ≤ + Shadow region: + ≤ ≤ .0 0 0

(1)

Now, an incident plane SH wave falling at ϕ0 is considered. The
time factor eiωt is assumed and is omitted, and the g superscript
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indicates the geometric field:
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which, after incidence in a plane-discontinuity, generates a reflected
plane SH wave:
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where k π λ ω c πf c=2 / = / =2 /s s s s is the wavenumber for secondary waves, ω
is the angular frequency, f is the frequency, and cs and λs are the
propagation velocity and the wavelength for secondary waves, respec-
tively. The reflection coefficient RSH is

⎧⎨⎩R =
− 1,for a clamped boundary (Dirichlet condition)

1,for a traction-free boundary (Neumann condition)SH
(4)

Finally, the total geometric solution can be defined as
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3. Macdonald exact solution

Second, the exact solution of Macdonald to the problem of a plane
SH wave diffracted by a wedge-shaped medium is given by [6,7]
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where η n ν= /n , RSH is the reflection coefficient defined in (4) and

⎧⎨⎩ϵ =
ϵ =ϵ =ϵ =…=1, for a clamped boundary

ϵ =1/2, ϵ =ϵ =…=1, for a traction-free boundaryn
0 1 2

0 1 2 (8)

Here, it is important to note that the Macdonald series expansion
has a very slow convergence for large values of k rs , that is, when
k r ≫ 1s .

4. Sommerfeld asymptotic solution or Keller solution (non-
uniform)

Third, the Sommerfeld asymptotic solution for high frequency [6]
(also called the non-uniform solution), which was also achieved by
Keller through the geometrical theory of diffraction [2], is given by
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where h Χ( ), the Heaviside unit-step function, is defined as
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are the first-order diffraction coefficients of the Sommerfeld asymptotic
solution. This asymptotic solution can also be written and understood
as
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is the diffracted field of the non-uniform solution and
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is the same geometric field defined in (5) in compact form, representing
the total field. The signs of cos( )ϕ ϕ±

2
0 within the regions defined in (1)

and (5) are as follows:
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In Fig. 2, the wavefront pattern of the Sommerfeld asymptotic
solution is shown for ϕ π0< < /20 .

5. Kouyoumjian & Pathak solution (uniform)

Fourth, the Kouyoumjian & Pathak solution for high frequency
[1,3] (also called the uniform solution) is an improvement of the
Sommerfeld asymptotic solution based on the Keller method [2],
achieved by proposing diffraction coefficients that remain valid near
the reflection and transmission boundaries, where the coefficients in
(12) fail. Then, this solution is given by

u r ϕ u u( , ) = +uni
g

uni
d (17)

where ug is the same geometric field defined in (15) and
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Fig. 1. Geometric displacement field of a plane SH wave falling on a wedge, where r and
ϕ are cylindrical coordinates.
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