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A B S T R A C T

Energy-Based Method for liquefaction potential evaluation was previously proposed and applied to simple soil
models and case history sites to show its general usability for a variety of seismic motions. The key of the
proposed method is to compare upward wave energy with energy capacity for liquefaction in each layer, though
the theoretical background in the energy comparison was not fully addressed in the previous paper. In this
supplement, wave energy in upward propagating SH-wave is formulated together with associated dissipated
energy, and how to compare it with liquefaction energy capacity is discussed in a simplified evaluation
procedure of EBM incorporating cyclic loading soil test data in the laboratory. An additional case study is also
conducted to know the effect of the simplification on evaluation results.

1. Introduction

In a previous paper by Kokusho and Mimori [1], an energy-based
liquefaction evaluation method (EBM) previously developed by
Kokusho [2] was applied to a uniform sand model shaken by seismic
motions recorded at different sites during different magnitude earth-
quakes. It was also employed in evaluating actual liquefaction case
histories where geotechnical data as well as recorded earthquake
motions were available. The results demonstrated that, for several
ground motions employed, EBM tends to give basically compatible
results with the stress-based liquefaction evaluation method (SBM), if
appropriate stress reduction coefficients rn are chosen in accordance
with earthquake magnitudes. However, for exceptional ground motions
in which acceleration is too large/small compared to small/large
energy, a gap widens between EBM and SBM, which is too large for
the coefficient rn in SBM to be adjustable.

The common basis of energy-based liquefaction evaluations so far
proposed is that the dissipated energy in soils during seismic loading is
a key parameter governing pore-pressure buildup or induced strain
during liquefaction. Among them, in the EBM proposed by Davis &
Berrill [3] the dissipated energy in liquefiable sand was not actually
quantified to compare with input seismic wave energies in individual
layers. Instead, seismic energies evaluated by empirical formulas using
earthquake magnitudes and seismic source distances presumably at
bedrock levels were directly plotted versus SPT blow counts in
liquefaction case histories to empirically develop boundary curves
separating liquefaction/non-liquefaction on the SPT N-value ~ energy
plane. On the other hand in EBM proposed by Kazama et al. [4],

seismic wave energy was not calculated, but dissipated energies were
calculated at individual layers in one-dimensional soil response
analyses using design motions to compare with threshold energies for
liquefaction.

On the other hand, in EBM developed by Kokusho [2] unlike other
EBMs, seismic wave energies are calculated as energy demands in
individual layer units and compared with energy capacities correlated
with dissipated energies. To the best of the author's knowledge, seismic
wave energies have scarcely been directly quantified in engineering
designs to compare with energy capacities in soils or structures. In this
regard, theoretical backgrounds were not fully discussed in the
previous papers [1,2] on how to evaluate seismic wave energies of
design motions and how to compare with dissipated energies based on
laboratory soil test results.

In this supplement, seismic wave energy and corresponding dis-
sipated energy in upward propagating SH-wave are first formulated
considering the effect of the boundary condition at the ground surface.
Then theoretical backgrounds in comparing the upward wave energy
with the liquefaction energy capacity using cyclic loading soil test data
in the laboratory are discussed together with some approximations
introduced to simplify the evaluation. Finally, an additional case study
is conducted to examine the applicability of the simplified procedure in
this energy-based method.

2. Energy In upward propagating SH-wave

In this energy method, the upward seismic wave energy is directly
compared with the energy capacity corresponding to a particular state
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of liquefaction such as 100% pore-pressure buildup or a certain
induced strain amplitude in each layer unit. Among the SH-wave
energies flowing up and down in the ground, the upward energy is
solely considered in the comparison, because the downward energy
originally constitutes a part of the upward energy if the cumulative
energy is concerned as already stated in the previous paper [2].

The energy of upward propagating SH-wave with the wave velocity
Vs passing through a horizontal plane A-A′ of a unit area illustrated in
Fig. 1 is formulated as follows. Kinetic energy increment in a soil
element of a unit horizontal area and small thickness dz V Δt= s (travel
distance in a small time increment Δt) having particle velocity u ̇ can be
expressed as

ΔE ρV Δt u= 1
2

( )̇k s
2

(1)

Strain energy increment stored in the same soil element is expressed by
shear stress τ Gγ= and shear strain γ and using γ u V= − ̇/ s as;
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Hence, ΔE ΔE=k e, and the wave energy increment passing through the
area in a time increment Δt is their sum expressed as;

ΔE ΔE ΔE ρV Δt u= + = ( )̇k e s
2 (3)

The cumulative energy in a time interval t=t1~t2 can be expressed as
the sum of the two energies of equal amounts (Timoshenko and
Goodier [5], Sarma [6]).
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2
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Thus, the wave energy of unilaterally propagating wave consists of 50%
kinetic and 50% strain energy, and its dimension is energy per unit
area.

Let us consider now upward harmonic SH-wave shown in Fig. 2
propagating in the z-axis (upward direction) with time t in a viscoe-
lastic medium as;

u B ω t z V= sin ( − ( / *))s (5)

Here, B=a wave amplitude, ω=angular frequency, and V*s (complex
S-wave velocity considering non-viscous damping) can be written as;

V G iG ρ V δ e* = ( + ′)/ = (1 + tan )s s
iδ2 1/4 /2

(6)

where G iG+ ′=complex shear modulus with real and imaginary parts
and ρ=soil density. The phase delay angle δ is defined by using G and
G′ and also correlated with damping ratio D as;

δ G G D= tan ( ′/ ) = tan (2 ).−1 −1 (7)

Eq. (5) is also written in the following form

u Be ω t z V= sin ( − / ′)βz
s

− (8)

where modified S-wave velocity is defined as

V
V

δ δ
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(cos ) (cos( /2))s
s

1/2 (9)

and can be approximated as V V′ ≈ *s s for δ < < 1.0. The wave attenua-
tion coefficient β is defined as

β δ δ ω V δ ω V= (cos ) (sin( /2))( / ) = (tan( /2))( / ′)s s
1/2 (10)

which can be approximated for δ < < 1.0 as

β ω δ V ωD V≈ ( tan )/(2 ) = /s s (11)

If Eq. (8) is substituted into Eq. (4), and integrated for one period of
the harmonic wave (t=0~ π ω2 / ), the energy in one wave length
λ πV ω= 2 /s can be obtained as;
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Using the amplitude of particle velocity as
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and the shear strain amplitude, wherein δ < < 1.0 is assumed, as
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the upward wave energy in Eq. (12) can be expressed as

E ρ ω B e λ ρ u λ Gγ λ= ( /2) = [ ( ̇ ) /2] = [ /2]βz
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Hence the energy density per wave length in the upward wave is

E λ ρ u Gγ W/ = ( ̇ ) /2 = /2 =a a
2 2

(16)

where W is equal to the maximum strain energy in a cyclic loading test
of an elastic material of shear modulus G ρV= s

2 with the amplitude γa.
As already explained, this energy density W is carried evenly by W/

2 each in kinetic and strain energies. This is confirmed by the following
calculations that the kinetic energy of the upward wave with the
amplitude uȧ averaged over one period T is written as;
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and the strain energy of the same wave with the amplitude γa averaged
over one period T is written as;

Fig. 1. Energy in upward propagating SH-wave.

Fig. 2. Wave energy and dissipated energy in upward propagating harmonic SH-wave
with wave length λ.
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