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a b s t r a c t

In this paper, a numerical approach for the pushover analysis of masonry towers, having hollow arbitrary
sections, is proposed. Masonry is considered a nonlinear softening material in compression and brittle in
tension. The tower, modeled in the framework of the Euler-Bernoulli beam theory, is subjected to a
predefined load distribution, but the problem is formulated as a displacement controlled analysis in
order to follow the post peak descending branch of the structural response. Nonlinear geometric effects
and nonlinear constraints (the latter due to surrounding buildings) are also considered. Benchmarking
pushover analyses are performed with the commercial code Abaqus in relation to a real case (the Gabbia
Tower in Mantua), which proved the accuracy and reliability of the results obtained with the present
formulation and the noteworthy reduction of computing time.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Many historical buildings are constituted by unreinforced ma-
sonry and are characterized by a high seismic vulnerability. In-
deed, these structures were conceived to withstand the effects of
gravity loads but were not provided for adequate lateral resistance
and ductility against horizontal loads, such as those induced by an
earthquake [1–4].

The analysis of masonry structures is very complex in view of
their heterogeneity and uncertainty typical of the constituent
materials. Masonry is a non-homogeneous, non-isotropic material,
with a mechanical behavior dominated by the nonlinear phase,
characterized by negligible strength and brittleness in tension, and
dissipative with softening behavior in compression [5].

For these features, the seismic vulnerability of masonry build-
ings is rarely assessed by linear elastic analysis procedures. Non-
linear dynamic analysis methods represent in principle the most
reliable tool. Nevertheless, they are very complex and require a
great amount of computational resources and time [6,7] and fur-
ther research efforts are still needed, before they can be con-
fidently used in standard design [8]. Therefore, nonlinear static
(pushover) procedures have been increasingly recognized as ef-
fective tools in seismic design and vulnerability assessment: they
provide information on both the strength and ductility of the
structure, while preserving the simplicity of a static analysis [9,10].
The main outcome consists in the curve relating the displacement

of a certain point (named controlling point) to the resultant of a
predefined horizontal distributed force applied to the structure.
This curve, representing the seismic capacity of the structure, is
then compared with the seismic demand, expressed in terms of
response spectrum, through specific procedures as the N2 or the
capacity spectrum method [11,12].

Due to their increasingly relevant role, several seismic codes
and recommendations have recently extended the application of
pushover-based methods to existing and monumental masonry
buildings [13,14].

Currently, several studies are available in literature dealing
with the seismic vulnerability assessment of historical masonry
buildings by means of pushover analyses, e.g. [15–19], and in
particular of ancient towers [20–22]. It is well recognized that
these pushover-based methods may be affected by inaccuracy
when applied to structures whose failure mechanisms are influ-
enced by the higher modes of vibration [7,23,24]. For this reason,
improved multi-modal pushover analyses were developed, which
combine the results obtained using the inertia force distribution
related to different modes, see e.g. [25].

A key point, when dealing with pushover analysis of masonry
structures, is the determination of the ultimate displacement in the
capacity curve. In [13] it is suggested that this is achieved when, in
the descending branch, the 85% of the maximum force is reached.
This criterion requires the implementation of a softening branch in
the masonry constitutive law (perfect plastic models would lead to
unrealistic high ductility), and consequently the need to perform
force drive pushover analyses with displacement control.

This paper presents a simple and efficient numerical approach
for the pushover analysis of masonry towers, having hollow
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arbitrary sections. It is assumed that masonry behaves as non-
linear material with dissipative and softening behavior and the
structure is modeled in the framework of the Euler-Bernoulli beam
theory. A specific topological algorithm is formulated in order to
derive, from the three dimensional model of the tower, a bi-di-
mensional discretization of each section, which is then adopted to
construct its moment-curvature curve. Nonlinear geometric effects
and the presence of constraints, due to surrounding buildings and
governed by nonlinear relationships in terms of displacement
versus reaction force, are also considered. The load distribution is
assigned as inverted triangular (however, the formulation can deal
with any type of load distribution), and the problem is formulated
in terms of monotonically increasing quantities, as primary un-
knowns, such as the section curvatures, in order to follow the post
peak softening branch of the structural response. In classical FEM
codes this type of analysis can be performed by means of arc-
length type procedures, see [26]. To avoid curvature localization,
induced by the masonry softening behavior, the concept of plastic
hinge is introduced and the determination of its length is dealt
with by comparison with classical 3D nonlinear finite element
analyses.

Soil is not directly considered in the present model. However,
its effect enters in the definition of the seismic demand, through
proper coefficients depending on the soil constitution and defined
according to seismic codes. The pounding effect, which could be
one of the main causes of severe building damages during earth-
quake, is not considered in the present formulation.

A case study is then proposed, the Gabbia Tower in Mantua,
and benchmarking pushover analyses are performed with the
commercial code Abaqus [27], whose results are used to validate
the numerical procedure. This example also allowed to point out
the great reduction of computing time achieved with the proposed
approach.

2. Numerical procedure

2.1. Constitutive equations

Masonry in compression is modeled by an elasto-plastic stress-
strain relationship with limited ductility and softening, already
adopted in other studies, see [6,8,28]. The behavior under tensile
stresses is assumed to be linear elastic up to the tensile strength,
followed by a linear softening branch down to zero, see Eq. (1) and
Fig. 1.
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where: Em is the Young modulus, ε = f E/mc mc m1 is the strain cor-
responding to the compressive strength fmc, ε μ ε=mc mc2 1 1 is the
strain at the end of the plateau, ε μ ε=mcu mc2 2 is the ultimate
compressive strain at the end of the softening branch, ε = f E/mt mt m1

and εmtu represent the strain at the tensile peak stress fmt and the
ultimate tensile strain, respectively. In Eq. (1) the sign � is in-
troduced since all material properties are assumed to be positive,
while stress σm and strain εm are positive if tensile and negative if
compressive.

Masonry towers are frequently surrounded by other buildings,
whose effect is here modeled, in a simplified manner consistent
with the assumption of Euler-Bernoulli beam theory, as a series of

supports acting along the axis of the tower. This approach may
represent a simplification in some cases (e.g. a tower connected to
a wall along only one of the edge of the tower) and fully 3D models
would be needed to properly deal with these more peculiar
situations.

The use of inverse analysis identification techniques, based on
measurements of the dynamic behavior of the structure, has been
shown to be a promising way to investigate the effectiveness of a
constrain, which strictly depends on the degree of connection
between the different structural elements, see [29–31].

In the proposed approach, the generic k-th restraint is modeled
by an elasto-plastic curve with limited ductility, which expresses
the force Rk transmitted by the support to the tower, as a function
of the displacement vtRk occurring in correspondence of the re-
strained section, see Fig. 2 and Eq. (2).
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The above relationship depends on three parameters: the
maximum force Rk, max and the elastic and ultimate displacements,
vtRk el, and vtRk ul, respectively.

2.2. Curvature versus bending moment curve

According to the above hypotheses and to the assumptions in
Fig. 3, the strain distribution along the section can be expressed as:

ε η χ( ) = − ( )y y 3m t t

where the axial deformation ηt is defined with respect to the
center of gravity G of the section.

Given the axial force NEd acting on the section (due to the self-
weight of the tower) and a curvature χ χ= ¯t t , the axial equilibrium
is imposed as:

∫ ( )η σ ε χ η( ) = ( ¯ ) = ( )N dA N, 4t t
A

m m t t Ed

Fig. 1. Stress-strain relationship assumed for masonry.

Fig. 2. Force-displacement curve governing the response of the generic k-th con-
strain acting on the tower.
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