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a b s t r a c t

Crucial features of seismograms and spectra with small amplitudes are explained by means of fractality
and fractional calculus. Wave propagations in the elastic range of porous solids imply precursors and
followers of coherent waves. They result from a non-local diffraction via force chains which is called
energy diffusion. Such phenomena are captured by fractional wave equations which are deduced by
means of an elastic energy and the balance of momentum for random fractal ensembles. Theoretical
propagations imply precursors which were similarly observed with bender elements, and a rate of dis-
sipation nearly proportional to the kinetic energy which suits to resonant column test results. A novel
three-dimensional fractional Dirichlet-Green function implies primary and secondary wave crests with
speed and alignment which do not depend on the fractal dimension. Power spectra in the dislocation-
free far-field of seismogeneous chain reactions and impacts tend to a fractality-dependent power law
with a peak-like cutoff, both theoretically and observed, therein a modified Huygen’s principle is em-
ployed. Limitations are discussed and possible extensions are indicated.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Harmonic excitations of sand and fissured rock lead to higher
harmonics with a kind of dispersive scattering during the propa-
gation. We will explain such and related phenomena with a linear
theory, whereas Nikolaev [1] proposed three kinds of nonlinear
effects: a) stress-dependence of elastic parameters, b) anelastic
behavior, c) triggered seismic activity. We focus on small devia-
tions from equilibria with uniform static stress fields so that
(a) means incremental linearity with stress-dependent com-
pliances. Except for near-fields considered at the ends of Sections
2, 4 and 5 we leave aside dislocations during propagations, thus
(b) is ruled out. This requires small amplitudes and a stable elastic
range, which excludes also (c).

Sand bodies and rock formations indicate stochastic (random)
fractality, but there is as yet no consent upon how to capture it
mathematically. Fractality of gases and liquids arises and changes
with critical phenomena at or off thermodynamic equilibria, re-
spectively. We are dealing with fractal solids which exhibit self-
similar roughness already at and near stable equilibria. Even in a
fractal sense they are often not homogeneous, which means multi-
fractality (Mandelbrot [2,3]). Fractal dimensions have been de-
termined for coastlines and rock surfaces by means of box

counting, but cannot likewise be identified for fault zones as
cracks are entangled so that internal surfaces are not uniquely
given. Thus the ‘band-limited fractal random medium’ proposed
by Wu and Aki [4] for wave scattering is rather subjective. Shapiro
and Faizullin [5] proposed ‘fractals of a turbulence medium’ and
‘discrete random scatterers’, this is disputable as they relate like-
wise calculated power spectra with fractal dimensions of cracks.

In these two and similar publications the field of propagation
velocities is assumed to vary spatially in a fractal manner. E.g., Man
et al. [6] propose ∝ γ−Q w1 with angular frequency ω and
�1o γ r�0.5 for the quality factor Q , and relate their γ with an
ambiguous fractal dimension of cracks. Combining a scattering
velocity model with a classical wave equation, Van der Baan [7]
derives a frequency-independent Q beyond a cutoff. Lithosphere
data do not suffice to verify one or the other Q -factor. Resonant
column tests with dry sand indicate that its rate of dissipation is
proportional to the kinetic energy in an elastic range (e.g. Huber
[8]). Hardin [9] derived a constant damping ratio D≡ 1/Q by means
of a viscosity which is proportional to the excitation frequency.
However, dry sand is not viscous and a constitutive relation should
not contain an excitation frequency. Thus Q -factors are question-
able for fissured rock and sand.

Following Prof. Rudolf Gorenflo, we propose the notion energy
diffusion for the diffraction in a fractal solid. Its mechanism, out-
lined in Section 2 by means of force chains, differs from classical
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ones because of the self-similar roughness. It implies a kind of
damping in the elastic range, i.e. without dislocations. Other than
with fluids in the laminar regime, it is non-local as propagation
paths of different sizes and directions are entangled. Other than
the diffusion of heat in a resting solid, the diffusion of seismic
energy occurs during propagations. We use this notion in oder to
avoid common connotations of ‘damping’, ‘diffraction’, ‘scattering’
and ‘dispersion’.

Combinations of a classical wave equation with a fractal velo-
city model cannot represent the balance of momentum for fractal
solids as terms with gradients of stiffness (e.g. Vrettos [10]) are left
aside and classically impossible with self-similar roughness. In-
stead, fractional wave equations have been derived from the bal-
ance of momentum with fractality (Gudehus and Touplikiotis [11],
Gorenflo et al. [12]), therein an elastic energy in its stable range is
employed which depends on the elastic strain. Confining to small
deviations from equilibrium, vectorial integro-differential equa-
tions are obtained which can be reduced to algebraic equations
(Section 3). This ‘fractional image’ represents expectation values,
but its interpretation, validation and calibration are admittedly
uncommon. Sand bodies are advantageous because they can re-
peatedly be assembled as samples or deposits, whereas fractal
rock samples and formations are hardly reproducible.

We evaluate fractional wave equations for Dirac-like and for
temporarily harmonic boundary conditions (Section 4). Linear
operators are employed and legitimate for small elastic deviations
from equilibria. The features of energy diffusion indicated above
are obtained as temporal and spatial fractional derivatives are
non-instantaneous and non-local, respectively (Gorenflo and
Mainardi [13]). Employing one- and three-dimensional funda-
mental solutions, we derive properties of power spectra for far-
field propagations which suit to observations (Section 5). Three
main conclusions, viz.

1) Fractality-independent wave crests and alignment, but fractal-
ity-dependent fast precursors and slow followers.

2) A rate of dissipation nearly proportional to the kinetic energy
for not too big space-time sections.

3) A trend of power spectra towards a fractality-dependent power-
law with a peak-like cutoff.

are discussed, and desirable extensions are indicated (Section
6). The relation of random fractality and its fractional image for
porous solids is outlined in the Appendix.

2. Propagation and energy diffusion in the elastic range of
porous solids

Observations indicate that sand and fissured rock have a fractal
pore system. π ςóϱo means passage, so pores are voids among grains
or fissures of rock forming a permeable system. Other than with
self-similarly rough lines and surfaces, Mandelbrot's [2] mass
fractal is adequate for three dimensions: The solid mass in a
control cube of length d is = ( ) αm m d d/r r

3 with reference values
m d,r r and a fractal dimension α in the range ca. 0.9o αo1. The
latter suits to the experience that Monge's and Delesse's rule,
stating equality of volume and surface mass fractions, works fairly
well although it implies α¼1, and that sand deposits exhibit
density fluctuations over several orders of magnitude. Fractal pore
systems ensue also from nested shear band patterns (e.g. Gudehus
[14]). Such fractals are stochastic so that m denotes the expecta-
tion value of a random ensemble, and require cutoffs: control
cubes are meaningless when being smaller than the size of grains
or rock fractions, and also beyond the size of a considered region.

We idealize sand and fissured rock as fractal solids with such a

distribution of their mass. With a single mineral the solid mass in a
control cube is the number of enclosed mineral molecules multi-
plied by the mass of each one. Likewise extensive is the mass of
pore fluid, the energy (with kinetic, gravitational, elastic, chemical
and thermal parts), and the linear momentum. Straight lines tra-
versing a fractal solid would exhibit self-similarly rough distribu-
tions of mass, energy and momentum with a fractal dimension α.
We focus on fractally homogeneous (or uniform) solids for which
control cubes with different centre positions have the same mr and
α. Sand and fissured rock are rather multi-fractal, i.e. their α is site-
and time-dependent, but let us first see how a single α with the
proposed narrow range works.

Except for the ends of Sections 2, 4 and 5 we consider fractal
solids in a stable elastic range. There is a specific elastic energy we,
depending on elastic strain components ϵij

e , which is the potential
of equilibrium stress components σij via σ =∂ ϵw /ij e ij

e (Jiang and Liu
[15]). In the case of stability small deviations of ϵwe ij

e from equili-
brium values can be approximated by a quadratic form which is
positively definite as otherwise kinetic energy would arise. This
implies a σij in the convex range of we and requires solid bridges
between grains or rock fractions. The elastic energy in a control
cube of length d is = ( ) αE w d d d/e e r

3 3 with dr and α as for m, which
means that the molecules have elastic strain and stress with the
same spatial fractality as their mass. ϵij

e and σij are state variables
which cannot be related with displacement gradients and force
densities, respectively, in the same way as without fractality.

A fractally distributed equilibrium stress field is transmitted by
force chains via contact flats of grains or rock fractions in a jammed
fabric. These were observed with photoelastic discs (e.g. Fig. 1
from [16]) and obtained with numerical simulations (e.g. Radjai
[17]). They arise also in jammed fabrics of natural grains or rock
fractions, and in entangled clusters of them up to big sizes, thus
geotechnical and tectonic stress fields indicate self-similar
roughness (Gudehus [14], Heidbach et al. [18]). Momentum pulses
propagate along branching force chains, the transmitting contact
flats being wider for bigger contact forces, with directions and
speeds which scatter fractally around size-dependent spatial
averages. Thus coherent waves induce faster precursors and
slower followers, while smaller incoherent waves are generated by
force chains. The balance of linear momentum cannot be homo-
genized to a classical wave equation for such propagations.

The implied energy diffusion is a mechanism in its own right. It
has little in common with the scattering of light or sound in calm
air as it results from the entangled non-locality of the momentum

Fig. 1. Force chains in a jammed fabric of photoelastic discs (from Behringer et al.
[18]).
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