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Abstract

A new formulation is presented here for harmonic wave motion in a transverse isotropic multilayered half-space. By means of a
Fourier-Bessel transform, the complex partial differential equations of wave motion can be uncoupled into a pair of second order ordi-
nary differential equations: one for SV-P vectorial waves (matrix size 2 x 2) and the other for SH scalar waves (matrix size 1 x 1). They
have the same form as that for isotropic media. Thus, the same solution procedure as that for isotropic media is equally applicable to
transverse isotropic media, which considerably simplifies the solution. Furthermore, by introducing a mixed variable formulation of the
wave motion solution, the matrix form of Green’s function for various boundary conditions of stratified soil is analytically derived.
Numerical examples of Green’s function and the dynamic foundation impedance demonstrate the accuracy and the efficiency of the pro-
posed approach. The computation is unconditionally stable.
© 2017 Production and hosting by Elsevier B.V. on behalf of The Japanese Geotechnical Society. This is an open access article under the CC BY-

NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

The study of wave motion and Green’s function is a sub-
ject of fundamental interest within the context of assessing
the seismic safety and vulnerability of large and complex
infrastructures because of its relevance to soil-structure
interaction, geotechnical earthquake engineering, founda-
tion vibration and seismology. It has been evidenced by
numerous researchers, such as Ward et al. (1965),
Pickering (1970) and Arthur and Menzies (1972), that soils
in nature invariably exhibit some degree of anisotropy in
their response to static and dynamic loads. Since the incep-
tion of the well-known work by Wolf (1935), extensive
research has been carried out with regard to wave motion
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in anisotropic media, such as works contributed by
Bardeb (1963), Barnett (1972), Beskos (1997), Wang and
Denda (2007) and Tonon et al. (2001). To date, however,
not many papers have been devoted to the problem of
the dynamic Green’s function in transverse isotropic and
anisotropic multilayered half-spaces. Eskandari-Ghadi
(2005) and Rahirmian et al. (2007) proposed an elastody-
namic potential method to deal with transverse isotropic
media; Khojasteh et al. (2011) presented a solution for
3D Green’s functions for a multilayered transverse isotro-
pic half-space with the aid of the potential method; and
Amiri-Hezaveh et al. (2013) presented a solution for verti-
cal and horizontal impedance functions for a surface rigid
rectangular foundation on a transverse isotropic multilay-
ered half-space using the potential method and the Hankel
transform. Kausel and Roesset (1981) and Oliveira
Barbosa and Kausel (2012) proposed the stiffness matrix
method and generalized the thin-layer method to deal with
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wave propagation and Green’s function in a 3D cross-
anisotropic space. The authors of this paper have presented
a solution for the dynamic impedance functions of an
arbitrary-shaped rigid foundation on an anisotropic multi-
layered half-space (Lin et al., 2014, 2015) by employing a
multi-Fourier transform approach.

This paper extends and improves on a previous work.
The contribution of the present work lies in the following
issues. Firstly, a new formulation of the wave motion equa-
tion is proposed. By employing the Fourier-Bessel trans-
form with special manipulation, the complex partial
differential equations in the wave-number domain can be
successfully reduced to a pair of uncoupled ordinary differ-
ential equations of the second order of matrix sizes 2 x 2
and 1 x 1: one for vectorial SV-P waves and the other
for scalar SH waves. They have the same analytical solu-
tions and present the same form as that for isotropic media.
Thus, the same solution procedure as that used for isotro-
pic media can be equally applied to transverse isotropic
media, which results in greatly simplifying the solution.
Furthermore, a mixed variable formulation of the wave
motion solution is proposed; this enables a simple and con-
venient evaluation of Green’s function. As a result, the
matrix form of Green’s function under various boundary
conditions of stratified soil, underlain by an elastic half-
space, is derived. A comparison with the numerical solu-
tions for Green’s function in the interior of a transverse iso-
tropic multilayered strata, available in the literature,
confirms the accuracy of the proposed approach. Then,
the effect of material anisotropy on Green’s function and
the dynamic impedance of foundations embedded in a mul-
tilayered half-space is studied.

2. Statement of the problem

A transverse isotropic multilayered half-space is consid-
ered (Fig. 1). It is assumed that the system is of the hori-
zontally layered type and the vertical axis is chosen to be
the axis of radial symmetry. The equations of motion for
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Fig. 1. Multilayered transverse isotropic half-space.

a layer in the cylindrical coordinates, with the z axis point-
ing downwards, are expressed as
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where a,, 0y and o, are the normal stress components in the
cylindrical coordinates in the r, § and z directions, respec-
tively; tg., 7.» and 7, are the corresponding shear stress
components and u,, uy and u. are the corresponding dis-
placement components, respectively; and p is the mass
density.

The constitutive equations for transverse isotropic
media are expressed as

0, =dn& +dpeg +dize;
09 = dp& + dii&g + dize: (2)
0. = dizé + dizgg + dise;

T,0 = desYy0 (3)

where de¢s = (d1; —d12)/2. A transverse isotropic elastic
medium is characterized by five independent constants:
Young’s modulus in the plane of isotropy, E;;, and perpen-
dicular to it, £, the shear modulus in a plane perpendicu-
lar to the plane of isotropy, Gy, and Poisson’s ratio in the
plane of isotropy, v;;, and perpendicular to it, v,. Elastic
constants dyi, dyy, di3, d3; and dyy are related to Young’s
moduli and Poisson’s ratios as follows:

diy = (Ew/a)(1 —nv;,)

Tz = d44“/gz, T = d4472r,

di» = (Ew/a)(nvi, + via)

diz = (Epn/a)vis(1 4+ vi) (4)
dy3 = (Ene/a)(1 = vy,)

dy = Gy,

in which

n = Eu/Ep

()

a = (1 + th)(l — Vi — 27’[\)2”)

Thermodynamic consideration requires that the strain
energy of an elastic material should always be positive.
This imposes certain restrictions on the acceptable range
of elastic constants.

des >0, dy >0,
(diy — des)dss > diy

di —de >0,
(6)

For isotropic media, we have E =FE;, =E, and
V="V, =V This results in dj =dy=71+2G,
dip =d; = Aand dy = dg¢g = G with / and G being Lame’s
constants. The corresponding material constants are then
reduced to two.

The strain-displacement relationship is expressed as
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